Science des données

Obtenez votre diplôme

Cours de Science des données dans l'air du temps

University of Illinois at Urbana–Champaign

Join us: Gies Global Challenges in Business Webinar Series

Hear expert faculty discuss business implications of COVID-19 in three upcoming webinars.

Register now for a Global MBA Webinar exploring COVID-19's impact on how we work and learn.

Cours les plus appréciés en Science des données

Certificats les plus appréciés en Science des données

Le meilleur de l'apprentissage automatique et de l'intelligence artificielle

Cours de Science des données les mieux notés

Maîtriser les compétences mathématiques de base et les statistiques pour la science des données

Devenir un(e) scientifique des données

Science des données pour les non-praticiens

    Questions fréquentes sur Science des données

  • Data science has critical applications across most industries, and is one of the most in-demand careers in computer science. Data scientists are the detectives of the big data era, responsible for unearthing valuable data insights through analysis of massive datasets. And just like a detective is responsible for finding clues, interpreting them, and ultimately arguing their case in court, the field of data science encompasses the entire data life cycle.

    That starts with capturing lots of raw data using data collection techniques, and then building and maintaining data pipelines and data warehouses that efficiently “clean” the data and make it accessible for analysis at scale. This data infrastructure allows data scientists to efficiently process datasets using data mining and data modeling skills, as well as analyze these outputs with sophisticated techniques like predictive analysis and qualitative analysis. Finally, these findings must be presented using data visualization and data reporting skills to help business decision makers.

    Depending on the size of the company, data scientists may be responsible for this entire data life cycle, or they might specialize in a particular portion of the life cycle as part of a larger data science team.