À propos de ce Spécialisation

30,085 consultations récentes
The Data Mining Specialization teaches data mining techniques for both structured data which conform to a clearly defined schema, and unstructured data which exist in the form of natural language text. Specific course topics include pattern discovery, clustering, text retrieval, text mining and analytics, and data visualization. The Capstone project task is to solve real-world data mining challenges using a restaurant review data set from Yelp. Courses 2 - 5 of this Specialization form the lecture component of courses in the online Master of Computer Science Degree in Data Science. You can apply to the degree program either before or after you begin the Specialization.

Certificat partageable

Obtenez un Certificat lorsque vous terminez

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau intermédiaire

Approx. 5 mois pour terminer

7 heures/semaine recommandées

Anglais

Sous-titres : Anglais, Coréen, Chinois (simplifié)

Certificat partageable

Obtenez un Certificat lorsque vous terminez

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau intermédiaire

Approx. 5 mois pour terminer

7 heures/semaine recommandées

Anglais

Sous-titres : Anglais, Coréen, Chinois (simplifié)

Comment fonctionne la Spécialisation

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

how it works

Cette Spécialisation compte 6 cours

Cours1

Cours 1

Visualisation de données

4.5
étoiles
907 évaluations
208 avis
Cours2

Cours 2

Récupération de texte et moteurs de recherche

4.4
étoiles
580 évaluations
122 avis
Cours3

Cours 3

Exploitation de text et analytique

4.4
étoiles
449 évaluations
108 avis
Cours4

Cours 4

La découverte de répétitions dans l'exploration de données

4.2
étoiles
229 évaluations
47 avis

Commencez à travailler pour obtenir votre master

Ce spécialisation fait partie du diplôme intégralement en ligne Master in Computer Science de Université de l'Illinois à Urbana-Champaign. Si vous êtes admis au programme complet, vos cours seront pris en compte dans votre apprentissage diplômant.

À propos de Université de l'Illinois à Urbana-Champaign

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

Avis

Meilleurs avis pour EXPLORATION DE DONNÉES

Foire Aux Questions

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • Time to completion can vary widely based on your schedule. Most learners are able to complete the Specialization in 4-5 months.

  • Each course in the Specialization is offered on a regular schedule with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • Comfortable with computer programming in multiple programming languages

    Basic knowledge of probability and statistics

  • It is recommended that the courses in the Specialization be taken in the order outlined. In the Capstone Project, you will have the opportunity to synthesize your learning in all the courses and apply your combined skills in a final project.

  • MCS courses in Coursera do not carry University of Illinois credit on their own. Each course has an enhanced for-credit component. You can earn academic credit if you combine an MCS Coursera course with the enhanced for-credit component offered on the University of Illinois platform. Some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • At completion of this Specialization in Data Mining, you will (1) know the basic concepts in pattern discovery and clustering in data mining, information retrieval, text analytics, and visualization, (2) understand the major algorithms for mining both structured and unstructured text data, and (3) be able to apply the learned algorithms to solve real-world data mining problems.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.