À propos de ce Spécialisation

755 314 consultations récentes
The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. This beginner-friendly program will teach you the fundamentals of machine learning and how to use these techniques to build real-world AI applications. This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field. This 3-course Specialization is an updated version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012. It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.) By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.
Certificat partageable
Obtenez un Certificat lorsque vous terminez
Cours en ligne à 100 %
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible
Définissez et respectez des dates limites flexibles.
Niveau débutant
Approximativement 2 mois pour terminer
Rythme recommandé de 8 heures/semaine
Anglais
Certificat partageable
Obtenez un Certificat lorsque vous terminez
Cours en ligne à 100 %
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible
Définissez et respectez des dates limites flexibles.
Niveau débutant
Approximativement 2 mois pour terminer
Rythme recommandé de 8 heures/semaine
Anglais

Comment fonctionne la Spécialisation

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

Cette Spécialisation compte 3 cours

Cours1

Cours 1

Supervised Machine Learning: Regression and Classification

4.9
étoiles
334 évaluations
86 avis
Cours2

Cours 2

Advanced Learning Algorithms

4.9
étoiles
48 évaluations
11 avis
Cours3

Cours 3

Unsupervised Learning, Recommenders, Reinforcement Learning

Offert par

Placeholder

deeplearning.ai

Placeholder

Université de Stanford

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.