À propos de ce cours

4,245,248 consultations récentes

Résultats de carrière des étudiants

39%

ont commencé une nouvelle carrière après avoir terminé ce cours

38%

ont bénéficié d'un avantage concret dans leur carrières grâce à ce cours

11%

a obtenu une augmentation de salaire ou une promotion
Certificat partageable
Obtenez un Certificat lorsque vous terminez
100 % en ligne
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Cours 1 sur 5 dans le
Dates limites flexibles
Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire
Approx. 20 heures pour terminer
Anglais
Sous-titres : Chinois (traditionnel), Arabe, Français, Ukrainien, Chinois (simplifié), Portugais (brésilien), Vietnamien, Coréen, Turc, Anglais, Espagnol, Japonais...

Compétences que vous acquerrez

Artificial Neural NetworkBackpropagationPython ProgrammingDeep Learning

Résultats de carrière des étudiants

39%

ont commencé une nouvelle carrière après avoir terminé ce cours

38%

ont bénéficié d'un avantage concret dans leur carrières grâce à ce cours

11%

a obtenu une augmentation de salaire ou une promotion
Certificat partageable
Obtenez un Certificat lorsque vous terminez
100 % en ligne
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Cours 1 sur 5 dans le
Dates limites flexibles
Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire
Approx. 20 heures pour terminer
Anglais
Sous-titres : Chinois (traditionnel), Arabe, Français, Ukrainien, Chinois (simplifié), Portugais (brésilien), Vietnamien, Coréen, Turc, Anglais, Espagnol, Japonais...

Offert par

Logo deeplearning.ai

deeplearning.ai

Programme du cours : ce que vous apprendrez dans ce cours

Évaluation du contenuThumbs Up97%(150,050 notes)Info
Semaine
1

Semaine 1

2 heures pour terminer

Introduction to deep learning

2 heures pour terminer
7 vidéos (Total 76 min), 2 lectures, 1 quiz
7 vidéos
Welcome5 min
What is a neural network?7 min
Supervised Learning with Neural Networks8 min
Why is Deep Learning taking off?10 min
About this Course2 min
Course Resources1 min
Geoffrey Hinton interview40 min
2 lectures
Frequently Asked Questions10 min
How to use Discussion Forums10 min
1 exercice pour s'entraîner
Introduction to deep learning30 min
Semaine
2

Semaine 2

8 heures pour terminer

Neural Networks Basics

8 heures pour terminer
19 vidéos (Total 161 min), 7 lectures, 3 quiz
19 vidéos
Logistic Regression5 min
Logistic Regression Cost Function8 min
Gradient Descent11 min
Derivatives7 min
More Derivative Examples10 min
Computation graph3 min
Derivatives with a Computation Graph14 min
Logistic Regression Gradient Descent6 min
Gradient Descent on m Examples8 min
Vectorization8 min
More Vectorization Examples6 min
Vectorizing Logistic Regression7 min
Vectorizing Logistic Regression's Gradient Output9 min
Broadcasting in Python11 min
A note on python/numpy vectors6 min
Quick tour of Jupyter/iPython Notebooks3 min
Explanation of logistic regression cost function (optional)7 min
Pieter Abbeel interview16 min
7 lectures
Clarification about Upcoming Logistic Regression Cost Function Video1 min
Clarification about Upcoming Gradient Descent Video1 min
Derivation of DL/dz (optional reading)10 min
Copy of Clarification about Upcoming Logistic Regression Cost Function Video1 min
Clarification of "dz"10 min
Deep Learning Honor Code2 min
Programming Assignment FAQ10 min
1 exercice pour s'entraîner
Neural Network Basics30 min
Semaine
3

Semaine 3

5 heures pour terminer

Shallow neural networks

5 heures pour terminer
12 vidéos (Total 109 min), 2 lectures, 2 quiz
12 vidéos
Neural Network Representation5 min
Computing a Neural Network's Output9 min
Vectorizing across multiple examples9 min
Explanation for Vectorized Implementation7 min
Activation functions10 min
Why do you need non-linear activation functions?5 min
Derivatives of activation functions7 min
Gradient descent for Neural Networks9 min
Backpropagation intuition (optional)15 min
Random Initialization7 min
Ian Goodfellow interview14 min
2 lectures
Clarification: Activation Function1 min
Clarification about Upcoming Backpropagation intuition (optional)1 min
1 exercice pour s'entraîner
Shallow Neural Networks30 min
Semaine
4

Semaine 4

5 heures pour terminer

Deep Neural Networks

5 heures pour terminer
8 vidéos (Total 64 min), 3 lectures, 3 quiz
8 vidéos
Forward Propagation in a Deep Network7 min
Getting your matrix dimensions right11 min
Why deep representations?10 min
Building blocks of deep neural networks8 min
Forward and Backward Propagation10 min
Parameters vs Hyperparameters7 min
What does this have to do with the brain?3 min
3 lectures
Clarification about Getting your matrix dimensions right video1 min
Clarification about Upcoming Forward and Backward Propagation Video1 min
Clarification about What does this have to do with the brain video1 min
1 exercice pour s'entraîner
Key concepts on Deep Neural Networks30 min

Avis

Meilleurs avis pour RÉSEAU DE NEURONES ET DEEP LEARNING

Voir tous les avis

À propos du Spécialisation Deep Learning

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Deep Learning

Foire Aux Questions

  • L’accès à des vidéos de cours et des devoirs dépend de votre type d’inscription. Si vous suivez un cours en mode auditeur libre, vous pourrez voir la plupart des contenus de cours gratuitement. Pour accéder aux devoirs notés et obtenir un certificat, vous devrez acheter une expérience de certificat, pendant ou après avoir assister au cours en tant qu’auditeur libre. Si vous ne visualisez pas l’option auditeur libre :

    • Il est possible que le cours ne propose pas d’option auditeur libre. Vous pouvez en revanche accéder à un essai gratuit ou faire une demande d'aide financière.
    • Le cours propose peut-être « Cours complet, aucun certificat » à la place. Cette option vous permet de voir tous les contenus de cours, de soumettre les évaluations requises et d'obtenir une note finale. Cependant, vous ne pourrez pas acheter une expérience de certificat.
  • Lorsque vous vous inscrivez au cours, vous bénéficiez d'un accès à tous les cours de la Spécialisation, et vous obtenez un Certificat lorsque vous avez réussi. Votre Certificat électronique est alors ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

  • Si vous vous abonnez, vous bénéficiez d'une période d'essai gratuite de 7 jours, durant laquelle vous pouvez annuler votre abonnement sans pénalité. Ensuite, nous n'accordons plus de remboursements, mais vous pouvez annuler votre abonnement à tout instant. Consultez notre politique de remboursement complète.

  • Oui, Coursera offre une Aide Financière aux étudiants qui n'ont pas les moyens d'acquitter les frais. Demandez-la en cliquant sur le lien Aide Financière sous le bouton S'inscrire situé à gauche. Vous devrez remplir un formulaire de demande et vous serez averti(e) si elle est acceptée. Vous devrez répéter cette procédure pour chaque cours de la Spécialisation, y compris pour le Projet Final. En savoir plus.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.