À propos de ce cours

236,890 consultations récentes

Résultats de carrière des étudiants

50%

ont commencé une nouvelle carrière après avoir terminé ce cours

48%

ont bénéficié d'un avantage concret dans leur carrières grâce à ce cours
Certificat partageable
Obtenez un Certificat lorsque vous terminez
100 % en ligne
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles
Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire
Approx. 19 heures pour terminer
Anglais
Sous-titres : Anglais

Ce que vous allez apprendre

  • Implement mathematical concepts using real-world data

  • Derive PCA from a projection perspective

  • Understand how orthogonal projections work

  • Master PCA

Compétences que vous acquerrez

Dimensionality ReductionPython ProgrammingLinear Algebra

Résultats de carrière des étudiants

50%

ont commencé une nouvelle carrière après avoir terminé ce cours

48%

ont bénéficié d'un avantage concret dans leur carrières grâce à ce cours
Certificat partageable
Obtenez un Certificat lorsque vous terminez
100 % en ligne
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles
Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire
Approx. 19 heures pour terminer
Anglais
Sous-titres : Anglais

Offert par

Logo Imperial College London

Imperial College London

Programme du cours : ce que vous apprendrez dans ce cours

Évaluation du contenuThumbs Up80%(3,939 notes)Info
Semaine
1

Semaine 1

5 heures pour terminer

Statistics of Datasets

5 heures pour terminer
8 vidéos (Total 27 min), 6 lectures, 4 quiz
8 vidéos
Welcome to module 141s
Mean of a dataset4 min
Variance of one-dimensional datasets4 min
Variance of higher-dimensional datasets5 min
Effect on the mean4 min
Effect on the (co)variance3 min
See you next module!27s
6 lectures
About Imperial College & the team5 min
How to be successful in this course5 min
Grading policy5 min
Additional readings & helpful references5 min
Set up Jupyter notebook environment offline10 min
Symmetric, positive definite matrices10 min
3 exercices pour s'entraîner
Mean of datasets15 min
Variance of 1D datasets15 min
Covariance matrix of a two-dimensional dataset15 min
Semaine
2

Semaine 2

4 heures pour terminer

Inner Products

4 heures pour terminer
8 vidéos (Total 36 min), 1 lecture, 5 quiz
8 vidéos
Dot product4 min
Inner product: definition5 min
Inner product: length of vectors7 min
Inner product: distances between vectors3 min
Inner product: angles and orthogonality5 min
Inner products of functions and random variables (optional)7 min
Heading for the next module!35s
1 lecture
Basis vectors20 min
4 exercices pour s'entraîner
Dot product10 min
Properties of inner products20 min
General inner products: lengths and distances20 min
Angles between vectors using a non-standard inner product20 min
Semaine
3

Semaine 3

4 heures pour terminer

Orthogonal Projections

4 heures pour terminer
6 vidéos (Total 25 min), 1 lecture, 3 quiz
6 vidéos
Projection onto 1D subspaces7 min
Example: projection onto 1D subspaces3 min
Projections onto higher-dimensional subspaces8 min
Example: projection onto a 2D subspace3 min
This was module 3!32s
1 lecture
Full derivation of the projection20 min
2 exercices pour s'entraîner
Projection onto a 1-dimensional subspace25 min
Project 3D data onto a 2D subspace40 min
Semaine
4

Semaine 4

5 heures pour terminer

Principal Component Analysis

5 heures pour terminer
10 vidéos (Total 52 min), 5 lectures, 2 quiz
10 vidéos
Problem setting and PCA objective7 min
Finding the coordinates of the projected data5 min
Reformulation of the objective10 min
Finding the basis vectors that span the principal subspace7 min
Steps of PCA4 min
PCA in high dimensions5 min
Other interpretations of PCA (optional)7 min
Summary of this module42s
This was the course on PCA56s
5 lectures
Vector spaces20 min
Orthogonal complements10 min
Multivariate chain rule10 min
Lagrange multipliers10 min
Did you like the course? Let us know!10 min
1 exercice pour s'entraîner
Chain rule practice20 min

Avis

Meilleurs avis pour MATHEMATICS FOR MACHINE LEARNING: PCA

Voir tous les avis

À propos du Spécialisation Mathématiques pour l'apprentissage automatique

For a lot of higher level courses in Machine Learning and Data Science, you find you need to freshen up on the basics in mathematics - stuff you may have studied before in school or university, but which was taught in another context, or not very intuitively, such that you struggle to relate it to how it’s used in Computer Science. This specialization aims to bridge that gap, getting you up to speed in the underlying mathematics, building an intuitive understanding, and relating it to Machine Learning and Data Science. In the first course on Linear Algebra we look at what linear algebra is and how it relates to data. Then we look through what vectors and matrices are and how to work with them. The second course, Multivariate Calculus, builds on this to look at how to optimize fitting functions to get good fits to data. It starts from introductory calculus and then uses the matrices and vectors from the first course to look at data fitting. The third course, Dimensionality Reduction with Principal Component Analysis, uses the mathematics from the first two courses to compress high-dimensional data. This course is of intermediate difficulty and will require Python and numpy knowledge. At the end of this specialization you will have gained the prerequisite mathematical knowledge to continue your journey and take more advanced courses in machine learning....
Mathématiques pour l'apprentissage automatique

Foire Aux Questions

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

  • You will need good python knowledge to get through the course.

  • This course is significantly harder and different in style: it uses more abstract concepts and requires much more programming experience than the other two courses. Therefore, when you complete the full specialization, you will be equipped with a much more diverse set of skills.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.