Principal Component Analysis with NumPy

4.6
étoiles
278 évaluations
Offert par
Coursera Project Network
8 373 déjà inscrits
Dans ce Projet Guidé, vous :

Implement Principal Component Analysis (PCA) from scratch with NumPy and Python

Conduct basic exploratory data analysis (EDA)

Create simple data visualizations with Seaborn and Matplotlib

Clock1.5 hours
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

Welcome to this 2 hour long project-based course on Principal Component Analysis with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to implement and apply PCA from scratch using NumPy in Python, conduct basic exploratory data analysis, and create simple data visualizations with Seaborn and Matplotlib. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed.

Les compétences que vous développerez

  • Data Science
  • Python Programming
  • Seaborn
  • Numpy
  • PCA

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction and Overview

  2. Load the Data and Libraries

  3. Visualize the Data

  4. Data Standardization

  5. Compute the Eigenvectors and Eigenvalues

  6. Singular Value Decomposition (SVD)

  7. Selecting Principal Components Using the Explained Variance

  8. Project Data Onto a Lower-Dimensional Linear Subspace

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Enseignant

Avis

Meilleurs avis pour PRINCIPAL COMPONENT ANALYSIS WITH NUMPY

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.