O objetivo deste curso é aproveitar a flexibilidade e a facilidade de uso do TensorFlow 2.x e do Keras para criar, treinar e implantar modelos de machine learning. Você aprenderá sobre a hierarquia da API TensorFlow 2.x e conhecerá os principais componentes do TensorFlow nos exercícios práticos. Mostraremos como trabalhar com conjuntos de dados e colunas de atributos. Você aprenderá a projetar e criar um pipeline de entrada de dados do TensorFlow 2.x. Você terá uma experiência prática com o carregamento de dados CSV, matrizes numpy, dados de texto e imagens usando o tf.Data.Dataset e com a criação de colunas de atributos numéricas, categóricas, em bucket e com hash.
Ce cours fait partie de la Spécialisation Machine Learning with TensorFlow on Google Cloud Platform em Português Brasileiro
Offert par
À propos de ce cours
Offert par

Google Cloud
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
Programme du cours : ce que vous apprendrez dans ce cours
Introdução
A ferramenta que utilizaremos para criar programas de aprendizado de máquina é o TensorFlow, que será apresentado neste curso. No primeiro curso, você aprendeu a formular problemas corporativos como problemas de aprendizado de máquina. No segundo, viu como a máquina funciona na prática e como criar conjuntos de dados que podem ser usados no aprendizado de máquina. Agora que seus dados estão prontos, você pode começar a criar programas de aprendizado de máquina.
Principais componentes do TensorFlow
Apresentaremos os principais componentes do TensorFlow. Além disso, você aprenderá na prática a criar programas de aprendizado de máquina. Você poderá fazer a comparação e a gravação de avaliações preguiçosas (lazy evaluation) e programas imperativos, trabalhar com gráficos, sessões e variáveis e, por fim, depurar programas do TensorFlow.
Estimator API
Neste módulo, falaremos sobre a Estimator API.
Como ampliar os modelos do TensorFlow com CMLE
Agora, vamos aprender a treinar seu modelo do TensorFlow na infraestrutura gerenciada do GCP para treinamento e implantação de modelo de aprendizado de máquina.
Resumo
Veja o resumo dos tópicos do TensorFlow abordados até agora no curso. Relembraremos o que foi discutido sobre o código do TensorFlow e a Estimator API, além do escalonamento dos seus modelos com o Cloud Machine Learning Engine.
À propos du Spécialisation Machine Learning with TensorFlow on Google Cloud Platform em Português Brasileiro
O que é aprendizado de máquina e que tipos de problema ele pode resolver? Quais são as cinco fases da conversão de um possível caso de uso de aprendizado de máquina e por que é importante que elas não sejam ignoradas? Por que as redes neurais são tão requisitadas hoje? Como configurar um problema de aprendizado supervisionado, além de encontrar uma solução ótima e generalizável com gradiente descendente e uma boa forma de criar conjuntos de dados? Aprenda a gravar modelos de aprendizado de máquina distribuídos com escalonamento no TensorFlow, faça escalonamento horizontal do treinamento desses modelos e ofereça previsões de alto desempenho. Converta dados brutos em atributos para informar características importantes desses dados ao aprendizado de máquina e ofereça uma percepção humana para dar suporte ao problema. Por fim, aprenda a incorporar a combinação ideal de parâmetros que produz modelos precisos e generalizados, além de conhecer a teoria para resolver tipos específicos de problemas de aprendizado de máquina. Você passará por todas as etapas do aprendizado de máquina, desde a criação de uma estratégia voltada para aprendizado de máquina até o treinamento, a otimização e a produção de modelos em laboratórios práticos com o Google Cloud Platform.

Foire Aux Questions
Puis-je prévisualiser un cours avant de m'inscrire ?
À quoi ai-je droit si je m'inscris ?
Quand recevrai-je mon Certificat de Cours ?
Pourquoi ne puis-je pas assister à ce cours en auditeur libre ?
Is financial aid available?
Puis-je obtenir des crédits universitaires si je réussis le Cours ?
D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.