À propos de ce Spécialisation

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau intermédiaire

Approx. 1 mois pour terminer

13 heures/semaine recommandées

Portugais (brésilien)

Sous-titres : Portugais (brésilien), Français, Allemand, Anglais, Espagnol, Japonais...

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau intermédiaire

Approx. 1 mois pour terminer

13 heures/semaine recommandées

Portugais (brésilien)

Sous-titres : Portugais (brésilien), Français, Allemand, Anglais, Espagnol, Japonais...

Fonctionnement du Spécialisation

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

how it works

Cette Spécialisation compte 5 cours

Cours1

How Google does Machine Learning em Português Brasileiro

4.7
31 notes
9 avis
O que é aprendizado de máquina e que tipos de problema ele pode resolver? O Google pensa no aprendizado de máquina de uma maneira um pouco diferente. Ele se concentra mais na lógica, em vez de apenas em dados. Discutimos por que esse modelo é útil quando pensamos na criação de canais de modelos de aprendizado de máquina. Em seguida, falamos sobre as cinco fases da conversão de um possível caso de uso a ser realizado por aprendizado de máquina e vemos a importância de não ignorar essas fases. Finalizamos com a identificação das tendências que podem ser ampliadas pelo aprendizado de máquina e como reconhecer isso....
Cours2

Launching into Machine Learning em Português Brasileiro

4.6
20 notes
4 avis
Discutiremos por que hoje as redes neurais funcionam tão bem para lidar com vários problemas, começando pela história do aprendizado de máquina. Em seguida, falaremos sobre como configurar um problema de aprendizado supervisionado e encontrar uma boa solução com gradiente descendente. Isso envolve a criação de conjuntos de dados que permitem a generalização. Esses métodos serão abordados de maneira didática para auxiliar na realização dos testes. Objetivos do curso: Identificar por que o aprendizado profundo é mais usado hoje em dia Otimizar e avaliar modelos usando funções de perda e métricas de desempenho Reduzir problemas comuns que surgem no aprendizado de máquina Criar conjuntos de dados de treinamento, avaliação e testes que podem ser repetidos e escalonáveis...
Cours3

Intro to TensorFlow em Português Brasileiro

4.9
11 notes
1 avis
Apresentaremos o TensorFlow de baixo nível e trabalharemos com os conceitos e APIs necessários para gravar modelos de aprendizado de máquina distribuídos. Levando em consideração os modelos do TensorFlow, explicaremos como fazer o escalonamento horizontal do treinamento desse modelo e oferecer previsões de alto desempenho com o Cloud Machine Learning Engine. Objetivos do curso: Criar modelos de aprendizado de máquina no TensorFlow Usar as bibliotecas do TensorFlow para solucionar problemas numéricos Resolver problemas e lidar com dificuldades comuns do código do TensorFlow Usar o tf_estimator para criar, treinar e avaliar modelos de aprendizado de máquina Treinar, implantar e produzir modelos de aprendizado de máquina em escala com o Cloud ML Engine...
Cours4

Feature Engineering em Português Brasileiro

Quer aprender a melhorar a precisão dos seus modelos de aprendizado de máquina? Que tal descobrir quais colunas de dados criam os atributos mais úteis? Damos as boas-vindas ao curso Feature Engineering no Google Cloud Platform. Falaremos sobre a diferença entre atributos bons e ruins, além de como pré-processar e transformar essas variáveis para o uso ideal nos seus modelos de aprendizado de máquina. Nesse curso, você fará laboratórios interativos para ver na prática como escolher atributos e fazer o pré-processamento no Google Cloud Platform. Nossos instrutores apresentarão as soluções de código em detalhes, que também serão disponibilizadas para usar como referência nos seus próprios projetos de aprendizado de máquina....

À propos de Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Foire Aux Questions

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • Cette Spécialisation n'est pas associée à des crédits universitaires, mais certaines universités peuvent décider d'accepter des Certificats de Spécialisation pour des crédits. Vérifiez-le auprès de votre établissement pour en savoir plus.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.