À propos de ce cours
4.8
1,326 notes
247 avis

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Niveau débutant

Approx. 26 heures pour terminer

Recommandé : 5 weeks of study, 5-7 hours/week...

Anglais

Sous-titres : Anglais

Compétences que vous acquerrez

Statistical InferenceStatistical Hypothesis TestingR Programming

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Niveau débutant

Approx. 26 heures pour terminer

Recommandé : 5 weeks of study, 5-7 hours/week...

Anglais

Sous-titres : Anglais

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
20 minutes pour terminer

About the Specialization and the Course

This short module introduces basics about Coursera specializations and courses in general, this specialization: Statistics with R, and this course: Inferential Statistics. Please take several minutes to browse them through. Thanks for joining us in this course!...
2 lectures
2 lectures
About Statistics with R Specialization10 min
More about Inferential Statistics10 min
3 heures pour terminer

Central Limit Theorem and Confidence Interval

Welcome to Inferential Statistics! In this course we will discuss Foundations for Inference. Check out the learning objectives, start watching the videos, and finally work on the quiz and the labs of this week. In addition to videos that introduce new concepts, you will also see a few videos that walk you through application examples related to the week's topics. In the first week we will introduce Central Limit Theorem (CLT) and confidence interval....
7 vidéos (Total 65 min), 6 lectures, 3 quiz
7 vidéos
Sampling Variability and CLT20 min
CLT (for the mean) examples10 min
Confidence Interval (for a mean)11 min
Accuracy vs. Precision7 min
Required Sample Size for ME4 min
CI (for the mean) examples5 min
6 lectures
Lesson Learning Objectives10 min
Lesson Learning Objectives10 min
Week 1 Suggested Readings and Practice Exercises10 min
About Lab Choices10 min
Week 1 Lab Instructions (RStudio)10 min
Week 1 Lab Instructions (RStudio Cloud)10 min
3 exercices pour s'entraîner
Week 1 Practice Quiz12 min
Week 1 Quiz14 min
Week 1 Lab12 min
Semaine
2
2 heures pour terminer

Inference and Significance

Welcome to Week Two! This week we will discuss formal hypothesis testing and relate testing procedures back to estimation via confidence intervals. These topics will be introduced within the context of working with a population mean, however we will also give you a brief peek at what's to come in the next two weeks by discussing how the methods we're learning can be extended to other estimators. We will also discuss crucial considerations like decision errors and statistical vs. practical significance. The labs for this week will illustrate concepts of sampling distributions and confidence levels....
7 vidéos (Total 59 min), 5 lectures, 3 quiz
7 vidéos
Hypothesis Testing (for a mean)14 min
HT (for the mean) examples9 min
Inference for Other Estimators10 min
Decision Errors8 min
Significance vs. Confidence Level6 min
Statistical vs. Practical Significance7 min
5 lectures
Lesson Learning Objectives10 min
Lesson Learning Objectives10 min
Week 2 Suggested Readings and Practice Exercises10 min
Week 2 Lab Instructions (RStudio)10 min
Week 2 Lab Instructions (RStudio Cloud)10 min
3 exercices pour s'entraîner
Week 2 Practice Quiz10 min
Week 2 Quiz16 min
Week 2 Lab12 min
Semaine
3
3 heures pour terminer

Inference for Comparing Means

Welcome to Week Three of the course! This week we will introduce the t-distribution and comparing means as well as a simulation based method for creating a confidence interval: bootstrapping. If you have questions or discussions, please use this week's forum to ask/discuss with peers....
11 vidéos (Total 84 min), 5 lectures, 3 quiz
11 vidéos
t-distribution7 min
Inference for a mean9 min
Inference for comparing two independent means8 min
Inference for comparing two paired means9 min
Power11 min
Comparing more than two means6 min
ANOVA9 min
Conditions for ANOVA2 min
Multiple comparisons6 min
Bootstrapping8 min
5 lectures
Lesson Learning Objectives10 min
Lesson Learning Objectives10 min
Week 3 Suggested Readings and Practice Exercises10 min
Week 3 Lab Instructions (RStudio)10 min
Week 3 Lab Instructions (RStudio Cloud)10 min
3 exercices pour s'entraîner
Week 3 Practice Quiz16 min
Week 3 Quiz28 min
Week 3 Lab14 min
Semaine
4
4 heures pour terminer

Inference for Proportions

Welcome to Week Four of our course! In this unit, we’ll discuss inference for categorical data. We use methods introduced this week to answer questions like “What proportion of the American public approves of the job of the Supreme Court is doing?”....
11 vidéos (Total 118 min), 5 lectures, 3 quiz
11 vidéos
Sampling Variability and CLT for Proportions15 min
Confidence Interval for a Proportion9 min
Hypothesis Test for a Proportion9 min
Estimating the Difference Between Two Proportions17 min
Hypothesis Test for Comparing Two Proportions13 min
Small Sample Proportions10 min
Examples4 min
Comparing Two Small Sample Proportions5 min
Chi-Square GOF Test14 min
The Chi-Square Independence Test11 min
5 lectures
Lesson Learning Objectives10 min
Lesson Learning Objectives10 min
Week 4 Suggested Readings and Practice Exercises10 min
Week 4 Lab Instructions (RStudio)10 min
Week 4 Lab Instructions (RStudio Cloud)10 min
3 exercices pour s'entraîner
Week 4 Practice Quiz18 min
Week 4 Quiz24 min
Week 4 Lab26 min
4.8
247 avisChevron Right

31%

a commencé une nouvelle carrière après avoir terminé ces cours

22%

a bénéficié d'un avantage concret dans sa carrière grâce à ce cours

Meilleurs avis

par MNMar 1st 2017

Great course. If you put in a little effort, you will come out with a lot of new knowledge. I recommend using the book after you have seen the movies. It gives a deeper picture of how it works. Great!

par ZCAug 24th 2017

This course by Professor Çetinkaya-Rundel is awesome because it is taught in a very clear and vivid way. Lab section and forum are so dope that I love them so much! Definitely strong recommendation!!!

Enseignant

Avatar

Mine Çetinkaya-Rundel

Associate Professor of the Practice
Department of Statistical Science

À propos de Université Duke

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world....

À propos de la Spécialisation Statistics with R

In this Specialization, you will learn to analyze and visualize data in R and create reproducible data analysis reports, demonstrate a conceptual understanding of the unified nature of statistical inference, perform frequentist and Bayesian statistical inference and modeling to understand natural phenomena and make data-based decisions, communicate statistical results correctly, effectively, and in context without relying on statistical jargon, critique data-based claims and evaluated data-based decisions, and wrangle and visualize data with R packages for data analysis. You will produce a portfolio of data analysis projects from the Specialization that demonstrates mastery of statistical data analysis from exploratory analysis to inference to modeling, suitable for applying for statistical analysis or data scientist positions....
Statistics with R

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous vous inscrivez au cours, vous bénéficiez d'un accès à tous les cours de la Spécialisation, et vous obtenez un Certificat lorsque vous avez réussi. Votre Certificat électronique est alors ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

  • If you want to complete the course and earn a Course Certificate by submitting assignments for a grade, you can upgrade your experience by subscribing to the course for $49/month. You can also apply for financial aid if you can't afford the course fee.

    When you enroll in a course that is part of a Specialization (which this course is), you will automatically be enrolled in the entire Specialization. You can unenroll from the Specialization if you’re not interested in the other courses or cancel your subscription once you complete the single course.

  • To enroll in an individual course, search for the course title in the catalog.

    To get full access to a course, including the option to earn grades and a Course Certificate, you'll need to subscribe. New subscribers will start with a full access subscription, which includes full access to every course in the Coursera catalog. Existing Specialization subscribers will be given the option to update to a full access subscription when enrolling in a new Specialization or course.

    When you enroll in a course that is part of a Specialization, you will automatically be enrolled in the entire Specialization. You can unenroll from the Specialization if you’re not interested in the other courses.

  • No. Completion of a Coursera course does not earn you academic credit from Duke; therefore, Duke is not able to provide you with a university transcript. However, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.