À propos de ce cours
18,378 consultations récentes

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Niveau intermédiaire

Completion of the first two courses in this specialization; high school-level algebra

Approx. 14 heures pour terminer

Recommandé : 4 weeks; 4-6 hours/week...

Anglais

Sous-titres : Anglais, Coréen

Compétences que vous acquerrez

Bayesian StatisticsPython ProgrammingStatistical Modelstatistical regression

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Niveau intermédiaire

Completion of the first two courses in this specialization; high school-level algebra

Approx. 14 heures pour terminer

Recommandé : 4 weeks; 4-6 hours/week...

Anglais

Sous-titres : Anglais, Coréen

Les étudiants prenant part à ce Course sont

  • Data Scientists
  • Process Analysts
  • Risk Managers
  • Data Analysts
  • Data Engineers

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
3 heures pour terminer

WEEK 1 - OVERVIEW & CONSIDERATIONS FOR STATISTICAL MODELING

7 vidéos (Total 67 min), 6 lectures, 1 quiz
7 vidéos
What Do We Mean by Fitting Models to Data'?18 min
Types of Variables in Statistical Modeling13 min
Different Study Designs Generate Different Types of Data: Implications for Modeling9 min
Objectives of Model Fitting: Inference vs. Prediction11 min
Plotting Predictions and Prediction Uncertainty8 min
Python Statistics Landscape2 min
6 lectures
Course Syllabus5 min
Meet the Course Team!10 min
Help Us Learn More About You!10 min
About Our Datasets2 min
Mixed effects models: Is it time to go Bayesian by default?15 min
Python Statistics Landscape1 min
1 exercice pour s'entraîner
Week 1 Assessment15 min
Semaine
2
5 heures pour terminer

WEEK 2 - FITTING MODELS TO INDEPENDENT DATA

6 vidéos (Total 85 min), 4 lectures, 3 quiz
6 vidéos
Linear Regression Inference15 min
Interview: Causation vs Correlation18 min
Logistic Regression Introduction15 min
Logistic Regression Inference7 min
NHANES Case Study Tutorial (Linear and Logistic Regression)17 min
4 lectures
Linear Regression Models: Notation, Parameters, Estimation Methods30 min
Try It Out: Continuous Data Scatterplot App15 min
Importance of Data Visualization: The Datasaurus Dozen10 min
Logistic Regression Models: Notation, Parameters, Estimation Methods30 min
3 exercices pour s'entraîner
Linear Regression Quiz20 min
Logistic Regression Quiz15 min
Week 2 Python Assessment20 min
Semaine
3
4 heures pour terminer

WEEK 3 - FITTING MODELS TO DEPENDENT DATA

8 vidéos (Total 121 min), 2 lectures, 2 quiz
8 vidéos
Multilevel Linear Regression Models21 min
Multilevel Logistic Regression models14 min
Practice with Multilevel Modeling: The Cal Poly App12 min
What are Marginal Models and Why Do We Fit Them?13 min
Marginal Linear Regression Models19 min
Marginal Logistic Regression11 min
NHANES Case Study Tutorial (Marginal and Multilevel Regression)10 min
2 lectures
Visualizing Multilevel Models10 min
Likelihood Ratio Tests for Fixed Effects and Variance Components10 min
2 exercices pour s'entraîner
Name That Model15 min
Week 3 Python Assessment20 min
Semaine
4
3 heures pour terminer

WEEK 4: Special Topics

6 vidéos (Total 105 min), 3 lectures, 1 quiz
6 vidéos
Bayesian Approaches to Statistics and Modeling15 min
Bayesian Approaches Case Study: Part I13 min
Bayesian Approaches Case Study: Part II19 min
Bayesian Approaches Case Study - Part III23 min
Bayesian in Python19 min
3 lectures
Other Types of Dependent Variables20 min
Optional: A Visual Introduction to Machine Learning20 min
Course Feedback10 min
1 exercice pour s'entraîner
Week 4 Python Assessment20 min
4.4
19 avisChevron Right

Principaux examens pour Fitting Statistical Models to Data with Python

par AFMar 12th 2019

The course is actually pretty good, however the mix between basic subjects (like univariate linear regression) and relatively advanced topics (marginal models) may discourage some students.

par JXJun 30th 2019

Really thorough and in-depth material about statistical models with python.

Enseignants

Avatar

Brenda Gunderson

Lecturer IV and Research Fellow
Department of Statistics
Avatar

Brady T. West

Research Associate Professor
Institute for Social Research
Avatar

Kerby Shedden

Professor
Department of Statistics

À propos de Université du Michigan

The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future....

À propos du Spécialisation Statistics with Python

This specialization is designed to teach learners beginning and intermediate concepts of statistical analysis using the Python programming language. Learners will learn where data come from, what types of data can be collected, study data design, data management, and how to effectively carry out data exploration and visualization. They will be able to utilize data for estimation and assessing theories, construct confidence intervals, interpret inferential results, and apply more advanced statistical modeling procedures. Finally, they will learn the importance of and be able to connect research questions to the statistical and data analysis methods taught to them....
Statistics with Python

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous vous inscrivez au cours, vous bénéficiez d'un accès à tous les cours de la Spécialisation, et vous obtenez un Certificat lorsque vous avez réussi. Votre Certificat électronique est alors ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.