À propos de ce Spécialisation

20,130 consultations récentes
Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
Résultats de carrière des étudiants
50 %
ont commencé une nouvelle carrière après avoir terminé ce spécialisation.
20 %
ont obtenu une augmentation de salaire ou une promotion.
Certificat partageable
Obtenez un Certificat lorsque vous terminez
Cours en ligne à 100 %
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible
Définissez et respectez des dates limites flexibles.
Niveau avancé
Approx. 4 mois pour terminer
11 heures/semaine recommandées
Anglais
Sous-titres : Anglais
Résultats de carrière des étudiants
50 %
ont commencé une nouvelle carrière après avoir terminé ce spécialisation.
20 %
ont obtenu une augmentation de salaire ou une promotion.
Certificat partageable
Obtenez un Certificat lorsque vous terminez
Cours en ligne à 100 %
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible
Définissez et respectez des dates limites flexibles.
Niveau avancé
Approx. 4 mois pour terminer
11 heures/semaine recommandées
Anglais
Sous-titres : Anglais

Cette Spécialisation compte 3 cours

Cours1

Cours 1

Probabilistic Graphical Models 1: Representation

4.7
étoiles
1,277 évaluations
282 avis
Cours2

Cours 2

Probabilistic Graphical Models 2: Inference

4.6
étoiles
443 évaluations
65 avis
Cours3

Cours 3

Probabilistic Graphical Models 3: Learning

4.6
étoiles
272 évaluations
41 avis

Offert par

Logo Université de Stanford

Université de Stanford

Foire Aux Questions

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Si vous vous abonnez, vous bénéficiez d'une période d'essai gratuite de 7 jours, durant laquelle vous pouvez annuler votre abonnement sans pénalité. Ensuite, nous n'accordons plus de remboursements, mais vous pouvez annuler votre abonnement à tout instant. Consultez notre politique de remboursement complète.

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Oui, Coursera offre une Aide Financière aux étudiants qui n'ont pas les moyens d'acquitter les frais. Demandez-la en cliquant sur le lien Aide Financière sous le bouton S'inscrire situé à gauche. Vous devrez remplir un formulaire de demande et vous serez averti(e) si elle est acceptée. Vous devrez répéter cette procédure pour chaque cours de la Spécialisation, y compris pour le Projet Final. En savoir plus.

  • Si vous vous inscrivez au cours, vous pouvez accéder à tous les cours de la Spécialisation et obtenir un Certificat lorsque vous terminez le travail. Si vous souhaitez seulement lire et examiner le contenu du cours, vous pouvez accéder gratuitement au cours en auditeur libre. Si vous n'avez pas les moyens d'acquitter les frais, vous pouvez faire une demande d'Aide Financière.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • This class does require some abstract thinking and mathematical skills. However, it is designed to require fairly little background, and a motivated student can pick up the background material as the concepts are introduced. We hope that, using our new learning platform, it should be possible for everyone to understand all of the core material.

    Though, you should be able to program in at least one programming language and have a computer (Windows, Mac or Linux) with internet access (programming assignments will be conducted in Matlab or Octave). It also helps to have some previous exposure to basic concepts in discrete probability theory (independence, conditional independence, and Bayes' rule).

  • For best results, the courses should be taken in order.

  • No.

  • You will be able to take a complex task and understand how it can be encoded as a probabilistic graphical model. You will now know how to implement the core probabilistic inference techniques, how to select the right inference method for the task, and how to use inference to reason. You will also know how to take a data set and use it to learn a model, whether from scratch, or to refine or complete a partially specified model.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.