À propos de ce Spécialisation

159,810 consultations récentes
Natural Language Processing (NLP) uses algorithms to understand and manipulate human language. This technology is one of the most broadly applied areas of machine learning. As AI continues to expand, so will the demand for professionals skilled at building models that analyze speech and language, uncover contextual patterns, and produce insights from text and audio. By the end of this Specialization, you will be ready to design NLP applications that perform question-answering and sentiment analysis, create tools to translate languages and summarize text, and even build chatbots. These and other NLP applications are going to be at the forefront of the coming transformation to an AI-powered future. This Specialization is designed and taught by two experts in NLP, machine learning, and deep learning. Younes Bensouda Mourri is an Instructor of AI at Stanford University who also helped build the Deep Learning Specialization. Łukasz Kaiser is a Staff Research Scientist at Google Brain and the co-author of Tensorflow, the Tensor2Tensor and Trax libraries, and the Transformer paper.
Certificat partageable
Obtenez un Certificat lorsque vous terminez
Cours en ligne à 100 %
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible
Définissez et respectez des dates limites flexibles.
Niveau intermédiaire
Approx. 4 mois pour terminer
5 heures/semaine recommandées
Anglais
Sous-titres : Anglais
Certificat partageable
Obtenez un Certificat lorsque vous terminez
Cours en ligne à 100 %
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible
Définissez et respectez des dates limites flexibles.
Niveau intermédiaire
Approx. 4 mois pour terminer
5 heures/semaine recommandées
Anglais
Sous-titres : Anglais

Cette Spécialisation compte 4 cours

Cours1

Cours 1

Natural Language Processing with Classification and Vector Spaces

4.6
étoiles
915 évaluations
211 avis
Cours2

Cours 2

Natural Language Processing with Probabilistic Models

4.8
étoiles
265 évaluations
43 avis
Cours3

Cours 3

Natural Language Processing with Sequence Models

4.5
étoiles
51 évaluations
13 avis
Cours4

Cours 4

Natural Language Processing with Attention Models

Offert par

Logo deeplearning.ai

deeplearning.ai

Foire Aux Questions

  • Si vous vous abonnez, vous bénéficiez d'une période d'essai gratuite de 7 jours, durant laquelle vous pouvez annuler votre abonnement sans pénalité. Ensuite, nous n'accordons plus de remboursements, mais vous pouvez annuler votre abonnement à tout instant. Consultez notre politique de remboursement complète.

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Oui, Coursera offre une Aide Financière aux étudiants qui n'ont pas les moyens d'acquitter les frais. Demandez-la en cliquant sur le lien Aide Financière sous le bouton S'inscrire situé à gauche. Vous devrez remplir un formulaire de demande et vous serez averti(e) si elle est acceptée. Vous devrez répéter cette procédure pour chaque cours de la Spécialisation, y compris pour le Projet Final. En savoir plus.

  • Si vous vous inscrivez au cours, vous pouvez accéder à tous les cours de la Spécialisation et obtenir un Certificat lorsque vous terminez le travail. Si vous souhaitez seulement lire et examiner le contenu du cours, vous pouvez accéder gratuitement au cours en auditeur libre. Si vous n'avez pas les moyens d'acquitter les frais, vous pouvez faire une demande d'Aide Financière.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • Cette Spécialisation n'est pas associée à des crédits universitaires, mais certaines universités peuvent décider d'accepter des Certificats de Spécialisation pour des crédits. Vérifiez-le auprès de votre établissement pour en savoir plus.

  • This Specialization is for students of machine learning or artificial intelligence as well as software engineers looking for a deeper understanding of how NLP models work and how to apply them.

  • Learners should have a working knowledge of machine learning, intermediate Python including experience with a deep learning framework (e.g., TensorFlow, Keras), as well as proficiency in calculus, linear algebra, and statistics. If you would like to brush up on these skills, we recommend the Deep Learning Specialization, offered by deeplearning.ai and taught by Andrew Ng.

  • This is a Specialization made up of 4 Courses. Course 3 is scheduled for the end of July. Course 4 will launch in September.

  • The deeplearning.ai Natural Language Processing Specialization is one-of-a-kind. 

    • It teaches cutting-edge techniques drawn from recent academic papers, some of which were only first published in 2019.
    • It covers practical methods for handling common NLP use cases (autocorrect, autocomplete), as well as advanced deep learning techniques for chatbots and question-answering.  
    • It starts with the foundations and takes you to a stage where you can build state-of-the-art attention models that allow for parallel computing. 
    • You will not only use packages but also learn how to build these models from scratch. We walk you through all the steps, from data processing to the finished products you can use in your own projects.
    • You will complete one project every week to make sure you understand the concepts for a total of 16 programming assignments.
  • We recommend taking the courses in the prescribed order for a logical and thorough learning experience.

  • This Specialization consists of four Courses. At the rate of 5 hours a week, it typically takes 4 weeks to complete each Course.

  • Learn classical machine learning skills and state-of-the-art deep learning techniques and perform a number of functions:

    • Use logistic regression, naïve Bayes, and word vectors to implement sentiment analysis, complete analogies, and translate words, and use locality sensitive hashing for approximate nearest neighbors.

    • Use dynamic programming, hidden Markov models, and word embeddings to autocorrect misspelled words, autocomplete partial sentences, and identify part-of-speech tags for words.

    • Use dense and recurrent neural networks, LSTMs, GRUs, and Siamese networks in TensorFlow and Trax to perform advanced sentiment analysis, text generation, named entity recognition, and to identify duplicate questions. 

    • Use encoder-decoder, causal, and self-attention to perform advanced machine translation of complete sentences, text summarization, question-answering and to build chatbots. Models covered include T5, BERT, transformer, reformer, and more!

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.