This course introduces you to additional topics in Machine Learning that complement essential tasks, including forecasting and analyzing censored data. You will learn how to find analyze data with a time component and censored data that needs outcome inference. You will learn a few techniques for Time Series Analysis and Survival Analysis. The hands-on section of this course focuses on using best practices and verifying assumptions derived from Statistical Learning.
Offert par


Specialized Models: Time Series and Survival Analysis
Réseau de compétences IBMÀ propos de ce cours
Votre entreprise pourrait-elle bénéficier de la formation des employés à des compétences recherchées ?
Essayez Coursera pour les affairesCompétences que vous acquerrez
- Dimensionality Reduction
- Unsupervised Learning
- Cluster Analysis
- Time Series
- K Means Clustering
Votre entreprise pourrait-elle bénéficier de la formation des employés à des compétences recherchées ?
Essayez Coursera pour les affairesOffert par
Programme de cours : ce que vous apprendrez dans ce cours
Introduction to Time Series Analysis
Stationarity and Time Series Smoothing
ARMA and ARIMA Models
Deep Learning and Survival Analysis Forecasts
Avis
- 5 stars72,11 %
- 4 stars15,38 %
- 3 stars6,73 %
- 2 stars3,84 %
- 1 star1,92 %
Meilleurs avis pour SPECIALIZED MODELS: TIME SERIES AND SURVIVAL ANALYSIS
I liked this course. It gives all the necessary information about classical machine learning algorithms as well as deep learning techniques
It is a good course to build foundation on the modeling of timerseries data. It will be good to add other lessons for anomaly detection on timeseries.
excellent and well explained course, especially for SARIMAX models.
Clearly explaind. I am currently working on time series forecasting and predictions. This course helped me a lot about the details of the topics.
Foire Aux Questions
Quand aurai-je accès aux vidéos de cours et aux devoirs ?
À quoi ai-je droit si je m'abonne à ce Certificat ?
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.