Chevron Left
Retour à Specialized Models: Time Series and Survival Analysis

Avis et commentaires pour d'étudiants pour Specialized Models: Time Series and Survival Analysis par Réseau de compétences IBM

4.5
étoiles
95 évaluations

À propos du cours

This course introduces you to additional topics in Machine Learning that complement essential tasks, including forecasting and analyzing censored data. You will learn how to find analyze data with a time component and censored data that needs outcome inference. You will learn a few techniques for Time Series Analysis and Survival Analysis. The hands-on section of this course focuses on using best practices and verifying assumptions derived from Statistical Learning. By the end of this course you should be able to: Identify common modeling challenges with time series data Explain how to decompose Time Series data: trend, seasonality, and residuals Explain how autoregressive, moving average, and ARIMA models work Understand how to select and implement various Time Series models Describe hazard and survival modeling approaches Identify types of problems suitable for survival analysis Who should take this course? This course targets aspiring data scientists interested in acquiring hands-on experience with Time Series Analysis and Survival Analysis.   What skills should you have? To make the most out of this course, you should have familiarity with programming on a Python development environment, as well as fundamental understanding of Data Cleaning, Exploratory Data Analysis, Calculus, Linear Algebra, Supervised Machine Learning, Unsupervised Machine Learning, Probability, and Statistics....

Meilleurs avis

YC

30 avr. 2022

Excellenct course.

I could experience so many methodologies.

So tough to finish each project.

I really thank IBM and Coursera for this great course with just so small tuition fee.

MB

6 mai 2021

A very well-structured course with useful techniques and detail guidelines. The Python code templates are also really useful when bringing into real-life problems.

Filtrer par :

1 - 25 sur 28 Avis pour Specialized Models: Time Series and Survival Analysis

par Ashish P

9 avr. 2021

par Lam C V D

10 oct. 2020

par R W

26 juil. 2021

par Mohamed G H

26 févr. 2021

par Keyur U

24 déc. 2020

par Adam L

19 sept. 2021

par My B

7 mai 2021

par Rufus T

8 avr. 2021

par Bishal B

4 avr. 2022

par Mehul D S

1 juil. 2021

par yong s c

1 mai 2022

par Ghada S

16 mai 2021

par SMRUTI R D

24 nov. 2021

par Altemur Ç

27 nov. 2021

par Mikhail G

17 déc. 2021

par Pavuluri V C

24 sept. 2021

par Alparslan T

5 janv. 2022

par george s

16 sept. 2021

par Juan M

24 juil. 2021

par Luis P S

17 juil. 2021

par Kevin P

8 avr. 2022

par Jose M

16 févr. 2021

par Fernandes M R

19 juin 2021

par vikas v

22 nov. 2020

par Dennis B

24 juin 2022