This course focuses on the concepts and tools behind reporting modern data analyses in a reproducible manner. Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them. The need for reproducibility is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary. In addition, reproducibility makes an analysis more useful to others because the data and code that actually conducted the analysis are available. This course will focus on literate statistical analysis tools which allow one to publish data analyses in a single document that allows others to easily execute the same analysis to obtain the same results.
Offert par
À propos de ce cours
Votre entreprise pourrait-elle bénéficier de la formation des employés à des compétences recherchées ?
Essayez Coursera pour les affairesCe que vous allez apprendre
Organize data analysis to help make it more reproducible
Write up a reproducible data analysis using knitr
Determine the reproducibility of analysis project
Publish reproducible web documents using Markdown
Compétences que vous acquerrez
- Knitr
- Data Analysis
- R Programming
- Markup Language
Votre entreprise pourrait-elle bénéficier de la formation des employés à des compétences recherchées ?
Essayez Coursera pour les affairesOffert par
Programme de cours : ce que vous apprendrez dans ce cours
Week 1: Concepts, Ideas, & Structure
Week 2: Markdown & knitr
Week 3: Reproducible Research Checklist & Evidence-based Data Analysis
Week 4: Case Studies & Commentaries
Avis
- 5 stars68,65 %
- 4 stars22,93 %
- 3 stars5,72 %
- 2 stars1,64 %
- 1 star1,03 %
Meilleurs avis pour RECHERCHE REPRODUCTIBLE
Enjoyed learning about rMarkdown, caching, and RPubs. Was also able to spend time plotting and aggregating data in different ways. Didn't enjoy cleaning data too much :)
This is a necessary evil. You can try to do the other classes in the specialization without it, but learning to use R markdown well is hard with out this or a similar class
I took this course as part of the Data Science specialization without any real expectation and realized that this subject is probably one of the most important in data analysis.
A very important course that greatly improved my ability to communicate the findings of any sort of data analysis that I perform. This is a critical skill to acquire to "deliver the means."
Foire Aux Questions
Quand aurai-je accès aux vidéos de cours et aux devoirs ?
À quoi ai-je droit si je m'abonne à cette Spécialisation ?
Une aide financière est-elle possible ?
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.