À propos de ce cours
4.3
225 notes
43 avis
Spécialisation
100 % en ligne

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Heures pour terminer

Approx. 15 heures pour terminer

Recommandé : 4 weeks, 4 - 5 hours per week...
Langues disponibles

Anglais

Sous-titres : Anglais

Compétences que vous acquerrez

Logistic RegressionData AnalysisPython ProgrammingRegression Analysis
Spécialisation
100 % en ligne

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Heures pour terminer

Approx. 15 heures pour terminer

Recommandé : 4 weeks, 4 - 5 hours per week...
Langues disponibles

Anglais

Sous-titres : Anglais

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
Heures pour terminer
3 heures pour terminer

Introduction to Regression

This session starts where the Data Analysis Tools course left off. This first set of videos provides you with some conceptual background about the major types of data you may work with, which will increase your competence in choosing the statistical analysis that’s most appropriate given the structure of your data, and in understanding the limitations of your data set. We also introduce you to the concept of confounding variables, which are variables that may be the reason for the association between your explanatory and response variable. Finally, you will gain experience in describing your data by writing about your sample, the study data collection procedures, and your measures and data management steps. ...
Reading
4 vidéos (Total 25 min), 5 lectures, 1 quiz
Video4 vidéos
Lesson 2: Experimental Data6 min
Lesson 3: Confounding Variables8 min
Lesson 4: Introduction to Multivariate Methods6 min
Reading5 lectures
Some Guidance for Learners New to the Specialization10 min
Getting Set up for Assignments10 min
Tumblr Instructions10 min
How to Write About Data10 min
Writing About Your Data: Example Assignment10 min
Semaine
2
Heures pour terminer
4 heures pour terminer

Basics of Linear Regression

In this session, we discuss more about the importance of testing for confounding, and provide examples of situations in which a confounding variable can explain the association between an explanatory and response variable. In addition, now that you have statistically tested the association between an explanatory variable and your response variable, you will test and interpret this association using basic linear regression analysis for a quantitative response variable. You will also learn about how the linear regression model can be used to predict your observed response variable. Finally, we will also discuss the statistical assumptions underlying the linear regression model, and show you some best practices for coding your explanatory variables Note that if your research question does not include one quantitative response variable, you can use one from your data set just to get some practice with the tool. ...
Reading
8 vidéos (Total 53 min), 9 lectures, 1 quiz
Video8 vidéos
SAS Lesson 2: Testing a Basic Linear Regression Mode6 min
SAS Lesson 3: Categorical Explanatory Variables5 min
Python Lesson 1: More on Confounding Variables6 min
Python Lesson 2: Testing a Basic Linear Regression Model8 min
Python Lesson 3: Categorical Explanatory Variables4 min
Lesson 4: Linear Regression Assumptions12 min
Lesson 5: Centering Explanatory Variables3 min
Reading9 lectures
SAS or Python - Which to Choose?10 min
Getting Started with SAS10 min
Getting Started with Python10 min
Course Codebooks10 min
Course Data Sets10 min
Uploading Your Own Data to SAS10 min
SAS Program Code for Video Examples10 min
Python Program Code for Video Examples10 min
Outlier Decision Tree10 min
Semaine
3
Heures pour terminer
3 heures pour terminer

Multiple Regression

Multiple regression analysis is tool that allows you to expand on your research question, and conduct a more rigorous test of the association between your explanatory and response variable by adding additional quantitative and/or categorical explanatory variables to your linear regression model. In this session, you will apply and interpret a multiple regression analysis for a quantitative response variable, and will learn how to use confidence intervals to take into account error in estimating a population parameter. You will also learn how to account for nonlinear associations in a linear regression model. Finally, you will develop experience using regression diagnostic techniques to evaluate how well your multiple regression model predicts your observed response variable. Note that if you have not yet identified additional explanatory variables, you should choose at least one additional explanatory variable from your data set. When you go back to your codebooks, ask yourself a few questions like “What other variables might explain the association between my explanatory and response variable?”; “What other variables might explain more of the variability in my response variable?”, or even “What other explanatory variables might be interesting to explore?” Additional explanatory variables can be either quantitative, categorical, or both. Although you need only two explanatory variables to test a multiple regression model, we encourage you to identify more than one additional explanatory variable. Doing so will really allow you to experience the power of multiple regression analysis, and will increase your confidence in your ability to test and interpret more complex regression models. If your research question does not include one quantitative response variable, you can use the same quantitative response variable that you used in Module 2, or you may choose another one from your data set. ...
Reading
10 vidéos (Total 68 min), 2 lectures, 1 quiz
Video10 vidéos
SAS Lesson 2: Confidence Intervals3 min
SAS Lesson 3: Polynomial Regression8 min
SAS Lesson 4: Evaluating Model Fit, pt. 15 min
SAS Lesson 5: Evaluating Model Fit, pt. 29 min
Python Lesson 1: Multiple Regression6 min
Python Lesson 2: Confidence Intervals3 min
Python Lesson 3: Polynomial Regression9 min
Python Lesson 4: Evaluating Model Fit, pt. 15 min
Python Lesson 5: Evaluating Model Fit, pt. 210 min
Reading2 lectures
SAS Program Code for Video Examples10 min
Python Program Code for Video Examples10 min
Semaine
4
Heures pour terminer
4 heures pour terminer

Logistic Regression

In this session, we will discuss some things that you should keep in mind as you continue to use data analysis in the future. We will also teach also you how to test a categorical explanatory variable with more than two categories in a multiple regression analysis. Finally, we introduce you to logistic regression analysis for a binary response variable with multiple explanatory variables. Logistic regression is simply another form of the linear regression model, so the basic idea is the same as a multiple regression analysis. But, unlike the multiple regression model, the logistic regression model is designed to test binary response variables. You will gain experience testing and interpreting a logistic regression model, including using odds ratios and confidence intervals to determine the magnitude of the association between your explanatory variables and response variable. You can use the same explanatory variables that you used to test your multiple regression model with a quantitative outcome, but your response variable needs to be binary (categorical with 2 categories). If you have a quantitative response variable, you will have to bin it into 2 categories. Alternatively, you can choose a different binary response variable from your data set that you can use to test a logistic regression model. If you have a categorical response variable with more than two categories, you will need to collapse it into two categories. ...
Reading
7 vidéos (Total 38 min), 6 lectures, 1 quiz
Video7 vidéos
Python Lesson 1: Categorical Explanatory Variables with More Than Two Categories6 min
Lesson 2: A Few Things to Keep in Mind2 min
SAS Lesson 3: Logistic Regression for a Binary Response Variable, pt 17 min
SAS Lesson 4: Logistic Regression for a Binary Response Variable, pt. 24 min
Python Lesson 3: Logistic Regression for a Binary Response Variable, pt. 17 min
Python Lesson 4: Logistic Regression for a Binary Response Variable, pt. 23 min
Reading6 lectures
SAS Program Code for Video Examples10 min
Python Program Code for Video Examples10 min
Week 1 Video Credits10 min
Week 2 Video Credits10 min
Week 3 Video Credits10 min
Week 4 Video Credits10 min
4.3
43 avisChevron Right
Orientation de carrière

25%

a commencé une nouvelle carrière après avoir terminé ces cours
Avantage de carrière

25%

a bénéficié d'un avantage concret dans sa carrière grâce à ce cours

Meilleurs avis

par VMMar 7th 2017

Awesome course. More than regression generation, they have explained in details about how to interpret regression coefficients and results and how to make conclusions. 5 Stars

par PCNov 28th 2016

This was a great course. I've done a few in the area of stats, regression and machine learning now and the Wesleyan ones are the most well-rounded of all of them

Enseignants

Avatar

Jen Rose

Research Professor
Psychology
Avatar

Lisa Dierker

Professor
Psychology

À propos de Wesleyan University

At Wesleyan, distinguished scholar-teachers work closely with students, taking advantage of fluidity among disciplines to explore the world with a variety of tools. The university seeks to build a diverse, energetic community of students, faculty, and staff who think critically and creatively and who value independence of mind and generosity of spirit. ...

À propos de la Spécialisation Data Analysis and Interpretation

Learn SAS or Python programming, expand your knowledge of analytical methods and applications, and conduct original research to inform complex decisions. The Data Analysis and Interpretation Specialization takes you from data novice to data expert in just four project-based courses. You will apply basic data science tools, including data management and visualization, modeling, and machine learning using your choice of either SAS or Python, including pandas and Scikit-learn. Throughout the Specialization, you will analyze a research question of your choice and summarize your insights. In the Capstone Project, you will use real data to address an important issue in society, and report your findings in a professional-quality report. You will have the opportunity to work with our industry partners, DRIVENDATA and The Connection. Help DRIVENDATA solve some of the world's biggest social challenges by joining one of their competitions, or help The Connection better understand recidivism risk for people on parole in substance use treatment. Regular feedback from peers will provide you a chance to reshape your question. This Specialization is designed to help you whether you are considering a career in data, work in a context where supervisors are looking to you for data insights, or you just have some burning questions you want to explore. No prior experience is required. By the end you will have mastered statistical methods to conduct original research to inform complex decisions....
Data Analysis and Interpretation

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous vous inscrivez au cours, vous bénéficiez d'un accès à tous les cours de la Spécialisation, et vous obtenez un Certificat lorsque vous avez réussi. Votre Certificat électronique est alors ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.