À propos de ce cours

38,528 consultations récentes

Résultats de carrière des étudiants

50%

ont commencé une nouvelle carrière après avoir terminé ce cours

47%

ont bénéficié d'un avantage concret dans leur carrières grâce à ce cours
Certificat partageable
Obtenez un Certificat lorsque vous terminez
100 % en ligne
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles
Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire
Approx. 24 heures pour terminer
Anglais
Sous-titres : Anglais, Français

Résultats de carrière des étudiants

50%

ont commencé une nouvelle carrière après avoir terminé ce cours

47%

ont bénéficié d'un avantage concret dans leur carrières grâce à ce cours
Certificat partageable
Obtenez un Certificat lorsque vous terminez
100 % en ligne
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles
Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire
Approx. 24 heures pour terminer
Anglais
Sous-titres : Anglais, Français

Enseignant

Offert par

Logo New York University

New York University

Programme du cours : ce que vous apprendrez dans ce cours

Évaluation du contenuThumbs Up84%(1,360 notes)Info
Semaine
1

Semaine 1

3 heures pour terminer

Artificial Intelligence & Machine Learning

3 heures pour terminer
11 vidéos (Total 75 min), 3 lectures, 1 quiz
11 vidéos
Specialization Objectives8 min
Specialization Prerequisites7 min
Artificial Intelligence and Machine Learning, Part I6 min
Artificial Intelligence and Machine Learning, Part II7 min
Machine Learning as a Foundation of Artificial Intelligence, Part I5 min
Machine Learning as a Foundation of Artificial Intelligence, Part II7 min
Machine Learning as a Foundation of Artificial Intelligence, Part III7 min
Machine Learning in Finance vs Machine Learning in Tech, Part I6 min
Machine Learning in Finance vs Machine Learning in Tech, Part II6 min
Machine Learning in Finance vs Machine Learning in Tech, Part III8 min
3 lectures
The Business of Artificial Intelligence30 min
How AI and Automation Will Shape Finance in the Future30 min
A. Geron, “Hands-On Machine Learning with Scikit-Learn and TensorFlow”, Chapter 130 min
1 exercice pour s'entraîner
Module 1 Quiz30 min
Semaine
2

Semaine 2

6 heures pour terminer

Mathematical Foundations of Machine Learning

6 heures pour terminer
6 vidéos (Total 45 min), 3 lectures, 2 quiz
6 vidéos
The No Free Lunch Theorem7 min
Overfitting and Model Capacity8 min
Linear Regression7 min
Regularization, Validation Set, and Hyper-parameters10 min
Overview of the Supervised Machine Learning in Finance3 min
3 lectures
I. Goodfellow, Y. Bengio, A. Courville, “Deep Learning”, Chapters 4.5, 5.1, 5.2, 5.3, 5.41 h
Leo Breiman, “Statistical Modeling: The Two Cultures”1 h
Jupyter Notebook FAQ10 min
1 exercice pour s'entraîner
Module 2 Quiz15 min
Semaine
3

Semaine 3

6 heures pour terminer

Introduction to Supervised Learning

6 heures pour terminer
7 vidéos (Total 75 min), 4 lectures, 2 quiz
7 vidéos
A First Demo of TensorFlow11 min
Linear Regression in TensorFlow10 min
Neural Networks11 min
Gradient Descent Optimization10 min
Gradient Descent for Neural Networks12 min
Stochastic Gradient Descent8 min
4 lectures
A.Geron, “Hands-On ML”, Chapter 9, Chapter 4 (Gradient Descent)1 h
E. Fama and K. French, “Size and Book-to-Market Factors in Earnings and Returns”, Journal of Finance, vol. 50, no. 1 (1995), pp. 131-155.15 min
J. Piotroski, “Value Investing: The Use of Historical Financial Statement Information to Separate Winners from Losers”, Journal of Accounting Research, Vol. 38, Supplement: Studies on Accounting Information and the Economics of the Firm (2000), pp. 1-4115 min
Jupyter Notebook FAQ10 min
1 exercice pour s'entraîner
Module 3 Quiz15 min
Semaine
4

Semaine 4

10 heures pour terminer

Supervised Learning in Finance

10 heures pour terminer
9 vidéos (Total 66 min), 4 lectures, 3 quiz
9 vidéos
Fundamental Analysis7 min
Machine Learning as Model Estimation8 min
Maximum Likelihood Estimation10 min
Probabilistic Classification Models6 min
Logistic Regression for Modeling Bank Failures, Part I8 min
Logistic Regression for Modeling Bank Failures, Part II5 min
Logistic Regression for Modeling Bank Failures, Part III8 min
Supervised Learning: Conclusion2 min
4 lectures
C. Bishop, “Pattern Recognition and Machine Learning”, Chapters 4.1, 4.2, 4.31 h
A. Geron, “Hands-On ML”, Chapters 3, Chapter 4 (Logistic Regression)1 h
Jupyter Notebook FAQ10 min
Jupyter Notebook FAQ10 min
1 exercice pour s'entraîner
Module 4 Quiz21 min

Avis

Meilleurs avis pour GUIDED TOUR OF MACHINE LEARNING IN FINANCE

Voir tous les avis

À propos du Spécialisation Machine Learning and Reinforcement Learning in Finance

The main goal of this specialization is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of machine learning (ML), with a particular focus on applications of ML to various practical problems in Finance. The specialization aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) mapping the problem on a general landscape of available ML methods, (2) choosing particular ML approach(es) that would be most appropriate for resolving the problem, and (3) successfully implementing a solution, and assessing its performance. The specialization is designed for three categories of students: · Practitioners working at financial institutions such as banks, asset management firms or hedge funds · Individuals interested in applications of ML for personal day trading · Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance. The modules can also be taken individually to improve relevant skills in a particular area of applications of ML to finance....
Machine Learning and Reinforcement Learning in Finance

Foire Aux Questions

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.