À propos de ce cours
4.3
227 notes
64 avis
100 % en ligne

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Niveau débutant

Niveau débutant

Heures pour terminer

Approx. 8 heures pour terminer

Recommandé : 9 hours/week...
Langues disponibles

Anglais

Sous-titres : Anglais, Roumain

Compétences que vous acquerrez

Artificial Intelligence (AI)Artificial Neural NetworkMachine LearningDeep Learning
100 % en ligne

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Niveau débutant

Niveau débutant

Heures pour terminer

Approx. 8 heures pour terminer

Recommandé : 9 hours/week...
Langues disponibles

Anglais

Sous-titres : Anglais, Roumain

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
Heures pour terminer
1 heure pour terminer

Deep Learning Products & Services

For the course “Deep Learning for Business,” the first module is “Deep Learning Products & Services,” which starts with the lecture “Future Industry Evolution & Artificial Intelligence” that explains past, current, and future industry evolutions and how DL (Deep Learning) and ML (Machine Learning) technology will be used in almost every aspect of future industry in the near future. The following lectures look into the hottest DL and ML products and services that are exciting the business world. First, the “Jeopardy!” winning versatile IBM Watson is introduced along with its DeepQA and AdaptWatson systems that use DL technology. Then the Amazon Echo and Echo Dot products are introduced along with the Alexa cloud based DL personal assistant that uses ASR (Automated Speech Recognition) and NLU (Natural Language Understanding) technology. The next lecture focuses on LettuceBot, which is a DL system that plants lettuce seeds with automatic fertilizer and herbicide nozzles control. Then the computer vision based DL blood cells analysis diagnostic system Athelas is introduced followed by the introduction of a classical and symphonic music composing DL system named AIVA (Artificial Intelligence Virtual Artist). As the last topic of module 1, the upcoming Apple watchOS 4 and the HomePod speaker that was presented at Apple's 2017 WWDC (World Wide Developers Conference) is introduced....
Reading
5 vidéos (Total 34 min), 2 quiz
Video5 vidéos
1.1 Future Industry Evolution & Artificial Intelligence11 min
1.2 IBM Watson7 min
1.3 Amazon Echo, Echo Dot, Alexa5 min
1.4 LettuceBot / 1.5 Athelas / 1.6 AIVA (Artificial Intelligence Virtual Artist) / 1.7 Apple watchOS 4, HomePod speaker5 min
Quiz2 exercices pour s'entraîner
Ungraded Quiz8 min
Graded Quiz14 min
Semaine
2
Heures pour terminer
1 heure pour terminer

Business with Deep Learning & Machine Learning

The second module “Business with Deep Learning & Machine Learning” first focuses on various business considerations based on changes to come due to DL (Deep Learning) and ML (Machine Learning) technology in the lecture “Business Considerations in the Machine Learning Era.” In the following lecture “Business Strategy with Machine Learning & Deep Learning” explains the changes that are needed to be more successful in business, and provides an example of business strategy modeling based on the three stages of preparation, business modeling, and model rechecking & adaptation. The next lecture “Why is Deep Learning Popular Now?” explains the changes in recent technology and support systems that enable the DL systems to perform with amazing speed, accuracy, and reliability. The last lecture “Characteristics of Businesses with DL & ML” first explains DL and ML based business characteristics based on data types, followed by DL & ML deployment options, the competitive landscape, and future opportunities are also introduced....
Reading
4 vidéos (Total 32 min), 2 quiz
Video4 vidéos
2.2 Business Strategy with Machine Learning & Deep Learning8 min
2.3 Why is Deep Learning Popular Now?6 min
2.4 Characteristics of Businesses with DL & ML7 min
Quiz2 exercices pour s'entraîner
Ungraded Quiz8 min
Graded Quiz20 min
Semaine
3
Heures pour terminer
1 heure pour terminer

Deep Learning Computing Systems & Software

The third module “Deep Learning Computing Systems & Software” focuses on the most significant DL (Deep Learning) and ML (Machine Learning) systems and software. Except for the NVIDIA DGX-1, the introduced DL systems and software in this module are not for sale, and therefore, may not seem to be important for business at first glance. But in reality, the companies that created these systems and software are indeed the true leaders of the future DL and ML business era. Therefore, this module introduces the true state-of-the-art level of DL and ML technology. The first lecture introduces the most popular DL open source software TensorFlow, CNTK (Cognitive Toolkit), Keras, Caffe, Theano, and their characteristics. Due to their popularly, strong influence, and diverse capabilities, the following lectures introduce the details of Google TensorFlow and Microsoft CNTK. Next, NVIDIA’s supercomputer DGX-1, that has fully integrated customized DL hardware and software, is introduced. In the following lectures, the most interesting competition of human versus machine is introduced in the Google AlphaGo lecture, and in the ILSVRC (ImageNet Large Scale Visual Recognition Challenge) lecture, the results of competition between cutting edge DL systems is introduced and the winning performance for each year is compared....
Reading
4 vidéos (Total 28 min), 2 quiz
Video4 vidéos
3.3 Microsoft CNTK (Cognitive Toolkit) / 3.4 NVIDIA DGX-13 min
3.5 Google AlphaGo8 min
3.6 ILSVRC (ImageNet Large Scale Visual Recognition Challenge)8 min
Quiz2 exercices pour s'entraîner
Ungraded Quiz8 min
Graded Quiz20 min
Semaine
4
Heures pour terminer
1 heure pour terminer

Basics of Deep Learning Neural Networks

The module “Basics of Deep Learning Neural Networks” first focuses on explaining the technical differences of AI (Artificial Intelligence), ML (Machine Learning), and DL (Deep Learning) in the first lecture titled “What is DL (Deep Learning) and ML (Machine Learning).” In addition, the characteristics of CPUs (Central Processing Units) and GPUs (Graphics Processing Units) used in DL as well as the representative computer performance units of FLOPS (FLoating-Point Operations Per Second) and IPS (Instructions Per Second) are introduced. Next, in the NN (Neural Network) lecture, the biological neuron (nerve cell) and its signal transfer is introduced followed by an ANN (Artificial Neural Network) model of a neuron based on a threshold logic unit and soft output activation functions is introduced. Then the extended NN technologies that uses MLP (Multi-Layer Perceptron), SoftMax, and AutoEncoder are explained. In the last lecture of the module, NN learning based on backpropagation is introduced along with the learning method types, which include supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning....
Reading
3 vidéos (Total 28 min), 2 quiz
Video3 vidéos
4.2 NN (Neural Network)7 min
4.3 Neural Network Learning (Backpropagation)10 min
Quiz2 exercices pour s'entraîner
Ungraded Quiz10 min
Graded Quiz20 min
4.3
64 avisChevron Right
Orientation de carrière

20%

a commencé une nouvelle carrière après avoir terminé ces cours
Avantage de carrière

30%

a bénéficié d'un avantage concret dans sa carrière grâce à ce cours

Meilleurs avis

par RNOct 2nd 2018

Amazing lectures! Detailed description of each topic coupled with mind blowing graded assignments! :)\n\nThanks a real bunch, Coursera for offering this courses & of course, scholarship!

par MGJan 16th 2019

Fun course and quick overview of Neural Networks and Deep Learning history and environments. Also includes popular applications of Deep Learning.

Enseignant

Avatar

Jong-Moon Chung

Professor, School of Electrical & Electronic Engineering
Director, Communications & Networking Laboratory

À propos de Yonsei University

Yonsei University was established in 1885 and is the oldest private university in Korea. Yonsei’s main campus is situated minutes away from the economic, political, and cultural centers of Seoul’s metropolitan downtown. Yonsei has 3,500 eminent faculty members who are conducting cutting-edge research across all academic disciplines. There are 18 graduate schools, 22 colleges and 133 subsidiary institutions hosting a selective pool of students from around the world. Yonsei is proud of its history and reputation as a leading institution of higher education and research in Asia....

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous achetez un Certificat, vous bénéficiez d'un accès à tout le contenu du cours, y compris les devoirs notés. Lorsque vous avez terminé et réussi le cours, votre Certificat électronique est ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.