Traffic Sign Classification Using Deep Learning in Python/Keras

4.6
étoiles
347 évaluations
Offert par
Coursera Project Network
9 961 déjà inscrits
Dans ce Projet guidé gratuit, vous :

Understand the theory and intuition behind Convolutional Neural Networks (CNNs).

Build and train a Convolutional Neural Network using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained CNN and ensure its generalization using various Key performance indicators.

Mettez en valeur cette expérience pratique dans un entretien

Clock2 hours
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this 1-hour long project-based course, you will be able to: - Understand the theory and intuition behind Convolutional Neural Networks (CNNs). - Import Key libraries, dataset and visualize images. - Perform image normalization and convert from color-scaled to gray-scaled images. - Build a Convolutional Neural Network using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.

Conditions

Basic python programming and mathematics.

Les compétences que vous développerez

Deep LearningArtificial Intelligence (AI)Machine LearningPython ProgrammingComputer Vision

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Task 1: Project overview

  2. Task 2: Import libraries and datasets

  3. Task 3: Perform image visualization

  4. Task 4: Convert images to gray-scale and perform normalization

  5. Task 5: Understand the theory and intuition behind Convolutional Neural Networks

  6. Task 6: Build deep learning model

  7. Task 7: Compile and train deep learning model

  8. Task 8: Assess trained model performance

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Enseignant

Avis

Meilleurs avis pour TRAFFIC SIGN CLASSIFICATION USING DEEP LEARNING IN PYTHON/KERAS

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.