Optimize Tensorflow models using TensorRT (TF-TRT)
Use TF-TRT to optimize several deep learning models at FP32, FP16, and INT8 precision
Observe how tuning TF-TRT parameters affects performance and inference throughput
Showcase this hands-on experience in an interview
This is a hands-on, guided project on optimizing your TensorFlow models for inference with NVIDIA's TensorRT. By the end of this 1.5 hour long project, you will be able to optimize Tensorflow models using the TensorFlow integration of NVIDIA's TensorRT (TF-TRT), use TF-TRT to optimize several deep learning models at FP32, FP16, and INT8 precision, and observe how tuning TF-TRT parameters affects performance and inference throughput. Prerequisites: In order to successfully complete this project, you should be competent in Python programming, understand deep learning and what inference is, and have experience building deep learning models in TensorFlow and its Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
It is assumed that are competent in Python programming and have prior experience with building deep learning models with TensorFlow and its Keras API
Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :
Introduction and Project Overview
Setup your TensorFlow and TensorRT Runtime
Load the Data and Pre-trained InceptionV3 Model
Create batched Input
Load the TensorFlow SavedModel
Get Baseline for Prediction Throughput and Accuracy
Convert a TensorFlow saved model into a TF-TRT Float32 Graph
Benchmark TF-TRT Float32
Convert to TF-TRT Float16 and Benchmark
Converting to TF-TRT INT8
Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.
Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé
Les projets guidés sont-ils disponible sur ordinateur et sur mobile ?
Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les projets guidés ne sont pas disponibles sur votre appareil mobile.
Qui sont les enseignants pour les projets guidés ?
Les enseignants des projets guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.
Puis-je télécharger le travail depuis mon projet guidé une fois que je l'ai terminé ?
À partir du projet guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.
De quelle expérience ai-je besoin pour réaliser ce projet guidé ?
En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce projet guidé pour afficher les connaissances requises. Pour chaque niveau de projet guidé, votre enseignant vous guidera étape par étape.
Puis-je terminer ce projet guidé directement avec mon navigateur web, au lieu d'installer un logiciel spécial ?
Oui, tout ce dont vous avez besoin pour terminer votre projet guidé sera présent sur un bureau cloud disponible dans votre navigateur.
Comment se présente l'expérience d'apprentissage pour les projets guidés ?
Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.
D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.