Deep Learning with PyTorch : Generative Adversarial Network
40 évaluations

3 881 déjà inscrits
Create Discriminator and Generator Network
Create a training loop to train GAN model
Mettez en valeur cette expérience pratique dans un entretien
40 évaluations
3 881 déjà inscrits
Create Discriminator and Generator Network
Create a training loop to train GAN model
Mettez en valeur cette expérience pratique dans un entretien
In this two hour project-based course, you will implement Deep Convolutional Generative Adversarial Network using PyTorch to generate handwritten digits. You will create a generator that will learn to generate images that look real and a discriminator that will learn to tell real images apart from fakes. This hands-on-project will provide you the detail information on how to implement such network and train to generate handwritten digit images. In order to be successful in this project, you will need to have a theoretical understanding on convolutional neural network and optimization algorithm like Adam or gradient descent. This project will focus more on the practical aspect of DCGAN and less on theoretical aspect. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Prior programming experience in Python and basic pytorch. Theoretical knowledge of Convolutional Neural Network and Training process (Optimization)
Convolutional Neural Network
Python Programming
pytorch
Genrative Adversarial Network
Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :
Setup Google Runtime
Configurations
Load MNIST Handwritten Dataset
Load Dataset into Batches
Create Discriminator Network
Create Generator Network
Create Loss Function and Load Optimizers
Training GAN
Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.
Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé
Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.
Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.
À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.
En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce Projet Guidé pour afficher les connaissances requises. Pour chaque niveau de Projet Guidé, votre enseignant vous guidera étape par étape.
Oui, tout ce dont vous avez besoin pour terminer votre Projet Guidé sera présent sur un bureau cloud disponible dans votre navigateur.
Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.