Logistic Regression with Python and Numpy

4.5
étoiles

144 évaluations

Offert par

5 918 déjà inscrits

Dans ce Projet Guidé, vous :

Implement Logistic Regression using Python and Numpy.

Apply Logistic Regression to solve binary classification problems.

2 hours
Intermédiaire
Aucun téléchargement requis
Vidéo en écran partagé
Anglais
Ordinateur de bureau uniquement

Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed.

Les compétences que vous développerez

  • Deep Learning

  • Machine Learning

  • Logistic Regression

  • Python Programming

  • Numpy

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction

  2. Hyperparameters

  3. Dataset

  4. A Mini Batch of Examples

  5. Create Model

  6. Forward Pass

  7. Backward Pass

  8. Update Parameters

  9. Check Model Performance

  10. Training Loop

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Enseignant

Avis

Meilleurs avis pour LOGISTIC REGRESSION WITH PYTHON AND NUMPY

Voir tous les avis

Foire Aux Questions

En achetant un Projet Guidé, vous obtenez tout ce dont vous avez besoin pour terminer ce Projet Guidé, y compris l'accès à un espace de travail de bureau cloud, via votre navigateur web, qui contient les fichiers et les logiciels dont vous avez besoin pour commencer, ainsi que les instructions vidéo étape par étape d'un expert en la matière.

Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.

Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.

À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.

Aucun remboursement n'est disponible pour les Projets Guidés. Consulter notre politique de remboursement complète.

Aucune aide financière n'est disponible pour les Projets Guidés.

L'audit n'est pas disponible pour les Projets Guidés.

En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce Projet Guidé pour afficher les connaissances requises. Pour chaque niveau de Projet Guidé, votre enseignant vous guidera étape par étape.

Oui, tout ce dont vous avez besoin pour terminer votre Projet Guidé sera présent sur un bureau cloud disponible dans votre navigateur.

Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.