Chevron Left
Retour à Logistic Regression with Python and Numpy

Avis et commentaires pour d'étudiants pour Logistic Regression with Python and Numpy par Coursera Project Network

146 évaluations

À propos du cours

Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed....

Meilleurs avis


8 avr. 2020

Want to do a project in Logistic Regression. You are at the right spot Don't delay and take the course.


9 mars 2020

Easy to follow along, each step was made very clear, and I understood the justification behind steps.

Filtrer par :

1 - 24 sur 24 Avis pour Logistic Regression with Python and Numpy

par Shiva S T

9 mars 2020

par Haofei M

4 mars 2020

par Duddela S P

9 avr. 2020

par Megan T

10 mars 2020

par Raj K

29 avr. 2020

par Pranjal M

14 juin 2020

par Thomas H

12 nov. 2021

par Ashwin K

2 sept. 2020

par Gangone R

2 juil. 2020


7 mai 2020

par Nandivada P E

15 juin 2020

par Doss D

23 juin 2020

par Saikat K

7 sept. 2020

par Lahcene O M

3 mars 2020

par tale p

27 juin 2020

par p s

24 juin 2020


5 juin 2020

par Munna K

27 sept. 2020

par Chow K M

4 oct. 2021

par Manzil-e A K

20 juil. 2020

par Rosario P

23 sept. 2020

par Abdul Q

30 avr. 2020

par Weerachai Y

8 juil. 2020

par Александр П

9 mars 2020