À propos de ce cours
71,383 consultations récentes

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Approx. 42 heures pour terminer

Recommandé : 7 weeks of study, 5-8 hours/week...

Anglais

Sous-titres : Anglais, Coréen, Arabe

Compétences que vous acquerrez

Logistic RegressionStatistical ClassificationClassification AlgorithmsDecision Tree

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Approx. 42 heures pour terminer

Recommandé : 7 weeks of study, 5-8 hours/week...

Anglais

Sous-titres : Anglais, Coréen, Arabe

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
1 heure pour terminer

Welcome!

8 vidéos (Total 27 min), 3 lectures
8 vidéos
What is this course about?6 min
Impact of classification1 min
Course overview3 min
Outline of first half of course5 min
Outline of second half of course5 min
Assumed background3 min
Let's get started!45s
3 lectures
Important Update regarding the Machine Learning Specialization10 min
Slides presented in this module10 min
Reading: Software tools you'll need10 min
2 heures pour terminer

Linear Classifiers & Logistic Regression

18 vidéos (Total 78 min), 2 lectures, 2 quiz
18 vidéos
Intuition behind linear classifiers3 min
Decision boundaries3 min
Linear classifier model5 min
Effect of coefficient values on decision boundary2 min
Using features of the inputs2 min
Predicting class probabilities1 min
Review of basics of probabilities6 min
Review of basics of conditional probabilities8 min
Using probabilities in classification2 min
Predicting class probabilities with (generalized) linear models5 min
The sigmoid (or logistic) link function4 min
Logistic regression model5 min
Effect of coefficient values on predicted probabilities7 min
Overview of learning logistic regression models2 min
Encoding categorical inputs4 min
Multiclass classification with 1 versus all7 min
Recap of logistic regression classifier1 min
2 lectures
Slides presented in this module10 min
Predicting sentiment from product reviews10 min
2 exercices pour s'entraîner
Linear Classifiers & Logistic Regression10 min
Predicting sentiment from product reviews24 min
Semaine
2
2 heures pour terminer

Learning Linear Classifiers

18 vidéos (Total 83 min), 2 lectures, 2 quiz
18 vidéos
Intuition behind maximum likelihood estimation4 min
Data likelihood8 min
Finding best linear classifier with gradient ascent3 min
Review of gradient ascent6 min
Learning algorithm for logistic regression3 min
Example of computing derivative for logistic regression5 min
Interpreting derivative for logistic regression5 min
Summary of gradient ascent for logistic regression2 min
Choosing step size5 min
Careful with step sizes that are too large4 min
Rule of thumb for choosing step size3 min
(VERY OPTIONAL) Deriving gradient of logistic regression: Log trick4 min
(VERY OPTIONAL) Expressing the log-likelihood3 min
(VERY OPTIONAL) Deriving probability y=-1 given x2 min
(VERY OPTIONAL) Rewriting the log likelihood into a simpler form8 min
(VERY OPTIONAL) Deriving gradient of log likelihood8 min
Recap of learning logistic regression classifiers1 min
2 lectures
Slides presented in this module10 min
Implementing logistic regression from scratch10 min
2 exercices pour s'entraîner
Learning Linear Classifiers12 min
Implementing logistic regression from scratch16 min
2 heures pour terminer

Overfitting & Regularization in Logistic Regression

13 vidéos (Total 66 min), 2 lectures, 2 quiz
13 vidéos
Review of overfitting in regression3 min
Overfitting in classification5 min
Visualizing overfitting with high-degree polynomial features3 min
Overfitting in classifiers leads to overconfident predictions5 min
Visualizing overconfident predictions4 min
(OPTIONAL) Another perspecting on overfitting in logistic regression8 min
Penalizing large coefficients to mitigate overfitting5 min
L2 regularized logistic regression4 min
Visualizing effect of L2 regularization in logistic regression5 min
Learning L2 regularized logistic regression with gradient ascent7 min
Sparse logistic regression with L1 regularization7 min
Recap of overfitting & regularization in logistic regression58s
2 lectures
Slides presented in this module10 min
Logistic Regression with L2 regularization10 min
2 exercices pour s'entraîner
Overfitting & Regularization in Logistic Regression16 min
Logistic Regression with L2 regularization16 min
Semaine
3
2 heures pour terminer

Decision Trees

13 vidéos (Total 47 min), 3 lectures, 3 quiz
13 vidéos
Intuition behind decision trees1 min
Task of learning decision trees from data3 min
Recursive greedy algorithm4 min
Learning a decision stump3 min
Selecting best feature to split on6 min
When to stop recursing4 min
Making predictions with decision trees1 min
Multiclass classification with decision trees2 min
Threshold splits for continuous inputs6 min
(OPTIONAL) Picking the best threshold to split on3 min
Visualizing decision boundaries5 min
Recap of decision trees56s
3 lectures
Slides presented in this module10 min
Identifying safe loans with decision trees10 min
Implementing binary decision trees10 min
3 exercices pour s'entraîner
Decision Trees22 min
Identifying safe loans with decision trees14 min
Implementing binary decision trees14 min
Semaine
4
2 heures pour terminer

Preventing Overfitting in Decision Trees

8 vidéos (Total 40 min), 2 lectures, 2 quiz
8 vidéos
Overfitting in decision trees5 min
Principle of Occam's razor: Learning simpler decision trees5 min
Early stopping in learning decision trees6 min
(OPTIONAL) Motivating pruning8 min
(OPTIONAL) Pruning decision trees to avoid overfitting6 min
(OPTIONAL) Tree pruning algorithm3 min
Recap of overfitting and regularization in decision trees1 min
2 lectures
Slides presented in this module10 min
Decision Trees in Practice10 min
2 exercices pour s'entraîner
Preventing Overfitting in Decision Trees22 min
Decision Trees in Practice28 min
1 heure pour terminer

Handling Missing Data

6 vidéos (Total 25 min), 1 lecture, 1 quiz
6 vidéos
Strategy 1: Purification by skipping missing data4 min
Strategy 2: Purification by imputing missing data4 min
Modifying decision trees to handle missing data4 min
Feature split selection with missing data5 min
Recap of handling missing data1 min
1 lecture
Slides presented in this module10 min
1 exercice pour s'entraîner
Handling Missing Data14 min
4.7
475 avisChevron Right

46%

a commencé une nouvelle carrière après avoir terminé ces cours

45%

a bénéficié d'un avantage concret dans sa carrière grâce à ce cours

16%

a obtenu une augmentation de salaire ou une promotion

Principaux examens pour Machine Learning: Classification

par SSOct 16th 2016

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

par CJJan 25th 2017

Very impressive course, I would recommend taking course 1 and 2 in this specialization first since they skip over some things in this course that they have explained thoroughly in those courses

Enseignants

Avatar

Carlos Guestrin

Amazon Professor of Machine Learning
Computer Science and Engineering
Avatar

Emily Fox

Amazon Professor of Machine Learning
Statistics

À propos de Université de Washington

Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world....

À propos du Spécialisation Apprentissage automatique

This Specialization from leading researchers at the University of Washington introduces you to the exciting, high-demand field of Machine Learning. Through a series of practical case studies, you will gain applied experience in major areas of Machine Learning including Prediction, Classification, Clustering, and Information Retrieval. You will learn to analyze large and complex datasets, create systems that adapt and improve over time, and build intelligent applications that can make predictions from data....
Apprentissage automatique

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous vous inscrivez au cours, vous bénéficiez d'un accès à tous les cours de la Spécialisation, et vous obtenez un Certificat lorsque vous avez réussi. Votre Certificat électronique est alors ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.