À propos de ce cours

53,647 consultations récentes

Résultats de carrière des étudiants

43%

ont commencé une nouvelle carrière après avoir terminé ce cours

44%

ont bénéficié d'un avantage concret dans leur carrières grâce à ce cours

29%

a obtenu une augmentation de salaire ou une promotion
Certificat partageable
Obtenez un Certificat lorsque vous terminez
100 % en ligne
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles
Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire
Approx. 6 heures pour terminer
Anglais
Sous-titres : Français, Portugais (brésilien), Allemand, Anglais, Espagnol, Japonais...

Compétences que vous acquerrez

TensorflowBigqueryMachine LearningData Cleansing

Résultats de carrière des étudiants

43%

ont commencé une nouvelle carrière après avoir terminé ce cours

44%

ont bénéficié d'un avantage concret dans leur carrières grâce à ce cours

29%

a obtenu une augmentation de salaire ou une promotion
Certificat partageable
Obtenez un Certificat lorsque vous terminez
100 % en ligne
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles
Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire
Approx. 6 heures pour terminer
Anglais
Sous-titres : Français, Portugais (brésilien), Allemand, Anglais, Espagnol, Japonais...

Enseignant

Offert par

Logo Google Cloud

Google Cloud

Programme du cours : ce que vous apprendrez dans ce cours

Évaluation du contenuThumbs Up92%(2,818 notes)Info
Semaine
1

Semaine 1

9 minutes pour terminer

Introduction

9 minutes pour terminer
2 vidéos (Total 9 min)
2 vidéos
Intro to Qwiklabs5 min
1 heure pour terminer

Practical ML

1 heure pour terminer
10 vidéos (Total 62 min)
10 vidéos
Supervised Learning5 min
Regression and Classification11 min
Short History of ML: Linear Regression7 min
Short History of ML: Perceptron5 min
Short History of ML: Neural Networks7 min
Short History of ML: Decision Trees5 min
Short History of ML: Kernel Methods4 min
Short History of ML: Random Forests4 min
Short History of ML: Modern Neural Networks8 min
1 exercice pour s'entraîner
Module Quiz6 min
1 heure pour terminer

Optimization

1 heure pour terminer
13 vidéos (Total 60 min)
13 vidéos
Defining ML Models4 min
Introducing the Natality Dataset6 min
Introducing Loss Functions6 min
Gradient Descent5 min
Troubleshooting a Loss Curve2 min
ML Model Pitfalls6 min
Lab: Introducing the TensorFlow Playground6 min
Lab: TensorFlow Playground - Advanced3 min
Lab: Practicing with Neural Networks6 min
Loss Curve Troubleshooting1 min
Performance Metrics3 min
Confusion Matrix5 min
1 exercice pour s'entraîner
Module Quiz6 min
3 heures pour terminer

Generalization and Sampling

3 heures pour terminer
9 vidéos (Total 64 min)
9 vidéos
Generalization and ML Models6 min
When to Stop Model Training5 min
Creating Repeatable Samples in BigQuery6 min
Demo: Splitting Datasets in BigQuery8 min
Lab Introduction1 min
Lab Solution Walkthrough9 min
Lab Introduction2 min
Lab Solution Walkthrough23 min
1 exercice pour s'entraîner
Module Quiz12 min
3 minutes pour terminer

Summary

3 minutes pour terminer
1 vidéo (Total 3 min)
1 vidéo

Avis

Meilleurs avis pour LAUNCHING INTO MACHINE LEARNING

Voir tous les avis

À propos du Spécialisation Machine Learning with TensorFlow on Google Cloud Platform

What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets? Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models. and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform. > By enrolling in this specialization you agree to the Qwiklabs Terms of Service as set out in the FAQ and located at: https://qwiklabs.com/terms_of_service <...
Machine Learning with TensorFlow on Google Cloud Platform

Foire Aux Questions

  • Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.

  • If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.

  • Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.

  • If you complete the course successfully, your electronic Course Certificate will be added to your Accomplishments page - from there, you can print your Course Certificate or add it to your LinkedIn profile.

  • This course is one of a few offered on Coursera that are currently available only to learners who have paid or received financial aid, when available.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.