In this course, you will learn the fundamental techniques for making personalized recommendations through nearest-neighbor techniques. First you will learn user-user collaborative filtering, an algorithm that identifies other people with similar tastes to a target user and combines their ratings to make recommendations for that user. You will explore and implement variations of the user-user algorithm, and will explore the benefits and drawbacks of the general approach. Then you will learn the widely-practiced item-item collaborative filtering algorithm, which identifies global product associations from user ratings, but uses these product associations to provide personalized recommendations based on a user's own product ratings.
Offert par
À propos de ce cours
Offert par

Université du Minnesota
The University of Minnesota is among the largest public research universities in the country, offering undergraduate, graduate, and professional students a multitude of opportunities for study and research. Located at the heart of one of the nation’s most vibrant, diverse metropolitan communities, students on the campuses in Minneapolis and St. Paul benefit from extensive partnerships with world-renowned health centers, international corporations, government agencies, and arts, nonprofit, and public service organizations.
Programme du cours : ce que vous apprendrez dans ce cours
Preface
Note that this course is structured into two-week chunks. The first chunk focuses on User-User Collaborative Filtering; the second chunk on Item-Item Collaborative Filtering. Each chunk has most of the lectures in the first week, and assignments/quizzes and advanced topics in the second week. We encourage learners to treat each two-week chunk as one unit, starting the assignments as soon as they feel they have learned enough to get going.
User-User Collaborative Filtering Recommenders Part 1
User-User Collaborative Filtering Recommenders Part 2
Item-Item Collaborative Filtering Recommenders Part 1
Item-Item Collaborative Filtering Recommenders Part 2
Advanced Collaborative Filtering Topics
Avis
Meilleurs avis pour NEAREST NEIGHBOR COLLABORATIVE FILTERING
i found this course very helpful and informative. it explains the theory while providing real-world examples on recommender systems. the assignment helps in clearing up any confusion with the material
Thank you so very much to open my eye see more view of recommendation field not only algorithms but use case and many trouble-shooting in worldwide business, moreover interview with noble professor.
I found this course very informative and clears lot of concept in Item based and used based collaborative filtering. Spreadsheet assignment helped me to clearly understand the algorithms.
Extremely informative course! It would be great if the assignments are created on python or R in the next season's offering. Thanks for the knowledge!
À propos du Spécialisation Systèmes de recommandation
A Recommender System is a process that seeks to predict user preferences. This Specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative filtering techniques, as well as advanced topics like matrix factorization, hybrid machine learning methods for recommender systems, and dimension reduction techniques for the user-product preference space.

Foire Aux Questions
Quand aurai-je accès aux vidéos de cours et aux devoirs ?
À quoi ai-je droit si je m'abonne à cette Spécialisation ?
Is financial aid available?
Puis-je obtenir des crédits universitaires si je réussis le Cours ?
D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.