- Language Industry
- Information Seeking Behavior
- Collective Intelligence
- Social Media Mining
- Backtesting
- Uncertainty Analysis
- Financial Analysis
- Motion Chart
Spécialisation Machine Learning with TensorFlow Google Cloud 日本語版
Google Cloud で機械学習(ML)について学ぶ. 実践的なデータを使用した包括的な ML 実習
Offert par
Compétences que vous acquerrez
À propos de ce Spécialisation
Projet d'apprentissage appliqué
この専門講座には 、Qwiklabs プラットフォームを使用したハンズオンラボが組み込まれています。
こうしたハンズオン コンポーネントにより、講義動画で学んだスキルを実際に使ってみることができます。プロジェクトには、Qwiklabs 内で使用、構成された Google Cloud Platform プロダクトなどのトピックが組み込まれています。モジュール全体で説明されている概念を使用して実際に体験してみましょう。
Certaines connaissances prérequises.
Certaines connaissances prérequises.
Comment fonctionne la Spécialisation
Suivez les cours
Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.
Projet pratique
Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.
Obtenir un Certificat
Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

Cette Spécialisation compte 5 cours
How Google does Machine Learning 日本語版
機械学習とはどのようなもので、どのような問題を解決できるでしょうか。Google は機械学習について、データだけでなくロジックの面からも独自の視点で考えています。機械学習モデルのパイプラインの構築について検討する際、このようなフレーミングがなぜデータ サイエンティストにとって有益であるかを説明します。
Launching into Machine Learning 日本語版
機械学習の歴史を皮切りに、ニューラル ネットワークがデータ サイエンスのさまざまな問題でうまく機能している理由をご紹介します。次に、教師あり学習の問題を設定し、勾配降下法を使用して適切な解決策を見つける方法について説明します。これには、一般化が可能なデータセットの作成も含まれます。実験に対応するため、繰り返し使用できるデータセットの作成方法について解説します。
Intro to TensorFlow 日本語版
このコースの目的は、柔軟で手軽な TensorFlow 2.x と Keras を使用して、機械学習モデルを作成、トレーニング、およびデプロイすることです。TensorFlow 2.x API の階層について学び、TensorFlow の主要コンポーネントを実践演習で理解します。データセットと特徴列の扱い方について学びます。TensorFlow 2.x 入力データ パイプラインの設計と作成の方法について学びます。tf.data.Dataset を使用して csv データ、NumPy 配列、テキストデータ、および画像を読み込む実践演習を行います。数値、カテゴリ、バケット、およびハッシュの特徴列を作成する実践演習も行います。
Feature Engineering 日本語版
機械学習(ML)モデルの精度を高める方法や、最も有用な特徴量を作成するためのデータ列の見極め方を学びたい方におすすめのコースです。この Feature Engineering コースでは、「良い」特徴量と「悪い」特徴量について説明し、それらをモデルで最大限に活用できるように前処理して変換する方法を解説します。
Offert par

Google Cloud
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
Foire Aux Questions
Quelle est la politique de remboursement ?
Puis-je m'inscrire à un seul cours ?
Une aide financière est-elle possible ?
Puis-je suivre le cours gratuitement ?
Ce cours est-il vraiment accessible en ligne à 100 % ? Dois-je assister à certaines activités en personne ?
Puis-je obtenir des crédits universitaires si je réussis la Spécialisation ?
コースの購読を終了するにはどうすればいいですか?
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.