À propos de ce Spécialisation

16 255 consultations récentes
What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets? Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models. and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform. > By enrolling in this specialization you agree to the Qwiklabs Terms of Service as set out in the FAQ and located at: https://qwiklabs.com/terms_of_service <
Certificat partageable
Obtenez un Certificat lorsque vous terminez
Cours en ligne à 100 %
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible
Définissez et respectez des dates limites flexibles.
Niveau intermédiaire
Approximativement 5 mois pour terminer
Rythme recommandé de 5 heures/semaine
Anglais
Certificat partageable
Obtenez un Certificat lorsque vous terminez
Cours en ligne à 100 %
Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible
Définissez et respectez des dates limites flexibles.
Niveau intermédiaire
Approximativement 5 mois pour terminer
Rythme recommandé de 5 heures/semaine
Anglais

Comment fonctionne la Spécialisation

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

Cette Spécialisation compte 5 cours

Cours1

Cours 1

How Google does Machine Learning

4.6
étoiles
6,785 évaluations
1,063 avis
Cours2

Cours 2

Launching into Machine Learning

4.6
étoiles
4,096 évaluations
465 avis
Cours3

Cours 3

Introduction à TensorFlow

4.4
étoiles
2,623 évaluations
323 avis
Cours4

Cours 4

Ingénierie des fonctionnalités

4.5
étoiles
1,668 évaluations
182 avis

Offert par

Placeholder

Google Cloud

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.