À propos de ce Spécialisation
5,217 consultations récentes

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau avancé

Approx. 2 mois pour terminer

11 heures/semaine recommandées

Anglais

Sous-titres : Anglais

Compétences que vous acquerrez

Data ScienceInformation EngineeringArtificial Intelligence (AI)Machine LearningPython Programming
Les étudiants prenant part à ce Specialization sont
  • Data Scientists
  • Data Analysts
  • Researchers
  • Software Engineers
  • Engineers

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau avancé

Approx. 2 mois pour terminer

11 heures/semaine recommandées

Anglais

Sous-titres : Anglais

Comment fonctionne la Spécialisation

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

how it works

Cette Spécialisation compte 6 cours

Cours1

AI Workflow: Business Priorities and Data Ingestion

Cours2

AI Workflow: Data Analysis and Hypothesis Testing

Cours3

AI Workflow: Feature Engineering and Bias Detection

Cours4

AI Workflow: Machine Learning, Visual Recognition and NLP

Enseignants

Avatar

Mark J Grover

Digital Content Delivery Lead
IBM Data & AI Learning
Avatar

Ray Lopez, Ph.D.

Data Science Curriculum Leader
IBM Data & Artificial Intelligence

À propos de IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

Foire Aux Questions

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • The entire specialization will require 35-40 hours of study.  Each of the 6 courses requires 4 to 9 hours of study each.

  • It is assumed you have a solid understanding of the following topics prior to starting this course: Fundamental understanding of Linear Algebra; Understanding of sampling, probability theory, and probability distributions; Knowledge of descriptive and inferential statistical concepts; General understanding of machine learning techniques and best practices; Practiced understanding of Python and the packages commonly used in data science: NumPy, Pandas, matplotlib, scikit-learn; Familiarity with IBM Watson Studio; Familiarity with the design thinking process. If you are unsure, Course 1 includes a Readiness Exam you can take to see if you are prepared.

  • You are STRONGLY encouraged to complete these courses in order as they are not individual independent courses, but part of a workflow where each course builds on the previous ones.  

  • Sorry, you will not.

  • By the end of this specialization you will be able to:

    1. Build an end to end AI solution. 

    2. Leverage Design Thinking as a framework to work through the translation of business goals into AI technical implementations.

    3. Bring together different capabilities such as Machine Learning, and specialized AI use cases.

    4. Leverage Python as the tool of choice for building AI models, while integrating IBM technologies to facilitate enterprise tasks such as cross-collaboration for the creation of machine learning models, employing out-of-the-box trained models for natural language processing and visual recognition, and deploying models to production.  

  • This specialization targets existing data science practitioners that have expertise building machine learning models, who want to deepen their skills on building and deploying AI in large enterprises. If you are an aspiring Data Scientist, this specialization is NOT for you as you need real world expertise to benefit from the content of these courses.

  • No. Most of the exercises may be completed with open source tools running on your personal computer. However, the exercises are designed with an enterprise focus and are intended to be run in an enterprise environment that allows for easier sharing and collaboration. Some of the exercises in this specialization are heavily focused on deployment and testing of machine learning models and use the IBM Watson tooling found on the IBM Cloud.

  • Yes. All IBM Cloud Data and AI services are based upon open source technologies.

  • The exercises in the course may be completed by anyone using the IBM Cloud "Lite" plan, which is free for use.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.