- Data Science
- Artificial Intelligence (AI)
- Machine Learning
- Predictive Analytics
- Modeling
- Artificial Neural Network
- Project Management
- Privacy
- Design Thinking
- Ethics
Spécialisation AI Product Management
Manage the Design & Development of ML Products. Understand how machine learning works and when and how it can be applied to solve problems. Learn to apply the data science process and best practices to lead machine learning projects, and how to develop human-centered AI products which ensure privacy and ethical standards.
Offert par
Ce que vous allez apprendre
Identify when and how machine learning can applied to solve problems
Apply human-centered design practices to design AI product experiences that protect privacy and meet ethical standards
Lead machine learning projects using the data science process and best practices from industry
Identify and mitigate privacy and ethical risks in AI projects
Compétences que vous acquerrez
À propos de ce Spécialisation
Projet d'apprentissage appliqué
Learners will implement three projects throughout the course of this Specialization:
1) In Course 1, you will complete a hands-on project where you will create a machine learning model to solve a simple problem (no coding necessary) and assess your model's performance.
2) In Course 2, you will identify and frame a problem of interest, design a machine learning system which can help solve it, and begin the development of a project plan.
3) In Course 3, you will perform a basic user experience design exercise for your ML-based solution and analyze the relevant ethical and privacy considerations of the project.
No programming experience or prior knowledge of machine learning / AI required.
No programming experience or prior knowledge of machine learning / AI required.
Comment fonctionne la Spécialisation
Suivez les cours
Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.
Projet pratique
Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.
Obtenir un Certificat
Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

Cette Spécialisation compte 3 cours
Machine Learning Foundations for Product Managers
In this first course of the AI Product Management Specialization offered by Duke University's Pratt School of Engineering, you will build a foundational understanding of what machine learning is, how it works and when and why it is applied. To successfully manage an AI team or product and work collaboratively with data scientists, software engineers, and customers you need to understand the basics of machine learning technology. This course provides a non-coding introduction to machine learning, with focus on the process of developing models, ML model evaluation and interpretation, and the intuition behind common ML and deep learning algorithms. The course will conclude with a hands-on project in which you will have a chance to train and optimize a machine learning model on a simple real-world problem.
Managing Machine Learning Projects
This second course of the AI Product Management Specialization by Duke University's Pratt School of Engineering focuses on the practical aspects of managing machine learning projects. The course walks through the keys steps of a ML project from how to identify good opportunities for ML through data collection, model building, deployment, and monitoring and maintenance of production systems. Participants will learn about the data science process and how to apply the process to organize ML efforts, as well as the key considerations and decisions in designing ML systems.
Human Factors in AI
This third and final course of the AI Product Management Specialization by Duke University's Pratt School of Engineering focuses on the critical human factors in developing AI-based products. The course begins with an introduction to human-centered design and the unique elements of user experience design for AI products. Participants will then learn about the role of data privacy in AI systems, the challenges of designing ethical AI, and approaches to identify sources of bias and mitigate fairness issues. The course concludes with a comparison of human intelligence and artificial intelligence, and a discussion of the ways that AI can be used to both automate as well as assist human decision-making.
Offert par

Université Duke
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
Foire Aux Questions
Quelle est la politique de remboursement ?
Puis-je m'inscrire à un seul cours ?
Une aide financière est-elle possible ?
Puis-je suivre le cours gratuitement ?
Ce cours est-il vraiment accessible en ligne à 100 % ? Dois-je assister à certaines activités en personne ?
Puis-je obtenir des crédits universitaires si je réussis la Spécialisation ?
Quelle est la durée nécessaire pour terminer la Spécialisation ?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
What will I be able to do upon completing the Specialization?
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.