Visualizing Filters of a CNN using TensorFlow
42 évaluations

2 249 déjà inscrits
Implement gradient ascent algorithm
Visualize image features that maximally activate filters of a CNN
Mettez en valeur cette expérience pratique dans un entretien
2 249 déjà inscrits
Implement gradient ascent algorithm
Visualize image features that maximally activate filters of a CNN
Mettez en valeur cette expérience pratique dans un entretien
In this short, 1 hour long guided project, we will use a Convolutional Neural Network - the popular VGG16 model, and we will visualize various filters from different layers of the CNN. We will do this by using gradient ascent to visualize images that maximally activate specific filters from different layers of the model. We will be using TensorFlow as our machine learning framework. The project uses the Google Colab environment which is a fantastic tool for creating and running Jupyter Notebooks in the cloud, and Colab even provides free GPUs for your notebooks. You will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like gradient descent but want to understand how to use the TensorFlow to visualize various filters of a CNN. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Prior experience in Python, theoretical understanding of Convolutional Neural Networks and optimization algorithms like gradient descent.
Deep Learning
Artificial Neural Network
Convolutional Neural Network
Machine Learning
Tensorflow
Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :
Introduction
Downloading the Model
Get Submodels
Image Visualization
Training Loop
Final Results
Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.
Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé
par FB
13 avr. 2022instructor explains everything clearly, but an actual application was missing. a quick cats and dogs comparison on how to infer filter activation would have been helpful.
Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.
Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.
À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.
En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce Projet Guidé pour afficher les connaissances requises. Pour chaque niveau de Projet Guidé, votre enseignant vous guidera étape par étape.
Oui, tout ce dont vous avez besoin pour terminer votre Projet Guidé sera présent sur un bureau cloud disponible dans votre navigateur.
Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.