Visualizing Filters of a CNN using TensorFlow

4.6
étoiles
18 évaluations
Offert par
Coursera Project Network
Dans ce Projet guidé gratuit, vous :

Implement gradient ascent algorithm

Visualize image features that maximally activate filters of a CNN

Mettez en valeur cette expérience pratique dans un entretien

Clock1 hour
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this short, 1 hour long guided project, we will use a Convolutional Neural Network - the popular VGG16 model, and we will visualize various filters from different layers of the CNN. We will do this by using gradient ascent to visualize images that maximally activate specific filters from different layers of the model. We will be using TensorFlow as our machine learning framework. The project uses the Google Colab environment which is a fantastic tool for creating and running Jupyter Notebooks in the cloud, and Colab even provides free GPUs for your notebooks. You will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like gradient descent but want to understand how to use the TensorFlow to visualize various filters of a CNN. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Conditions

Prior experience in Python, theoretical understanding of Convolutional Neural Networks and optimization algorithms like gradient descent.

Les compétences que vous développerez

Deep LearningArtificial Neural NetworkConvolutional Neural NetworkMachine LearningTensorflow

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction

  2. Downloading the Model

  3. Get Submodels

  4. Image Visualization

  5. Training Loop

  6. Final Results

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.