Visualizing Filters of a CNN using TensorFlow

4.5
étoiles

55 évaluations

Offert par

3 035 déjà inscrits

Dans ce Projet Guidé gratuit, vous :
1 hour
Intermédiaire
Aucun téléchargement requis
Vidéo en écran partagé
Anglais
Ordinateur de bureau uniquement

In this short, 1 hour long guided project, we will use a Convolutional Neural Network - the popular VGG16 model, and we will visualize various filters from different layers of the CNN. We will do this by using gradient ascent to visualize images that maximally activate specific filters from different layers of the model. We will be using TensorFlow as our machine learning framework. The project uses the Google Colab environment which is a fantastic tool for creating and running Jupyter Notebooks in the cloud, and Colab even provides free GPUs for your notebooks. You will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like gradient descent but want to understand how to use the TensorFlow to visualize various filters of a CNN. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Conditions

Les compétences que vous développerez

  • Deep Learning

  • Artificial Neural Network

  • Convolutional Neural Network

  • Machine Learning

  • Tensorflow

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Avis

Meilleurs avis pour VISUALIZING FILTERS OF A CNN USING TENSORFLOW

Voir tous les avis

Foire Aux Questions