Multiple Linear Regression with scikit-learn

4.5
étoiles
302 évaluations
Offert par
Coursera Project Network
6,647 déjà inscrits
Dans ce projet guidé, vous :

Build univariate and multivariate linear regression models in Python using scikit-learn

Perform Exploratory Data Analysis (EDA) and data visualization with seaborn

Evaluate model fit and accuracy using numerical measures such as R² and RMSE

Model interaction effects in regression using basic feature engineering techniques

Clock2 hours
BeginnerDébutant
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this 2-hour long project-based course, you will build and evaluate multiple linear regression models using Python. You will use scikit-learn to calculate the regression, while using pandas for data management and seaborn for data visualization. The data for this project consists of the very popular Advertising dataset to predict sales revenue based on advertising spending through media such as TV, radio, and newspaper. By the end of this project, you will be able to: - Build univariate and multivariate linear regression models using scikit-learn - Perform Exploratory Data Analysis (EDA) and data visualization with seaborn - Evaluate model fit and accuracy using numerical measures such as R² and RMSE - Model interaction effects in regression using basic feature engineering techniques This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, this means instant access to a cloud desktop with Jupyter Notebooks and Python 3.7 with all the necessary libraries pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

Machine LearningPython ProgrammingData Visualization (DataViz)Linear RegressionScikit-Learn

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction and Overview

  2. Load the Data

  3. Relationships between Features and Target

  4. Multiple Linear Regression Model

  5. Feature Selection

  6. Model Evaluation Using Train/Test Split and Model Metrics

  7. Interaction Effect (Synergy) in Regression Analysis

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Enseignant

Avis

Meilleurs avis pour MULTIPLE LINEAR REGRESSION WITH SCIKIT-LEARN

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.