Visual Machine Learning with Yellowbrick

4.7
étoiles
63 évaluations
Offert par
Coursera Project Network
2,820 déjà inscrits
Dans ce projet guidé, vous :

Evaluate the performance of a classifier using visual diagnostic tools from Yellowbrick

Diagnose and handle class imbalance problems

Clock2 hours
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

Welcome to this project-based course on Visual Machine Learning with Yellowbrick. In this course, we will explore how to evaluate the performance of a random forest classifier on the Poker Hand data set using visual diagnostic tools from Yellowbrick. With an emphasis on visual steering of our analysis, we will cover the following topics in our machine learning workflow: feature analysis, feature importance, algorithm selection, model evaluation using regression, cross-validation, and hyperparameter tuning. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, Yellowbrick, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

Data ScienceMachine LearningPython ProgrammingData Visualization (DataViz)Scikit-Learn

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction to the Project and Dataset

  2. Separate the Data into Features and Targets

  3. Evaluating Class Balance

  4. Up-sampling from Minority Classes

  5. Training a Random Forests Classifier

  6. Classification Accuracy

  7. ROC Curve and AUC

  8. Classification Report Heatmap

  9. Class Prediction Error

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Avis

Meilleurs avis pour VISUAL MACHINE LEARNING WITH YELLOWBRICK

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.