Linear Regression with Python
416 évaluations

10 760 déjà inscrits
Create a linear model, and implement gradient descent.
Train the linear model to fit given data using gradient descent.
416 évaluations
10 760 déjà inscrits
Create a linear model, and implement gradient descent.
Train the linear model to fit given data using gradient descent.
In this 2-hour long project-based course, you will learn how to implement Linear Regression using Python and Numpy. Linear Regression is an important, fundamental concept if you want break into Machine Learning and Deep Learning. Even though popular machine learning frameworks have implementations of linear regression available, it's still a great idea to learn to implement it on your own to understand the mechanics of optimization algorithm, and the training process. Since this is a practical, project-based course, you will need to have a theoretical understanding of linear regression, and gradient descent. We will focus on the practical aspect of implementing linear regression with gradient descent, but not on the theoretical aspect. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Data Science
Deep Learning
Machine Learning
Python Programming
Linear Regression
Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :
Introduction
Dataset
Initialize Parameters
Forward Pass
Compute Loss
Backward Pass
Update Parameters
Training Loop
Predictions
Additional Example
Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.
Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé
par MS
30 mai 2020Very practical class. Just with less than an hour I got good idea. Thank Coursera and the instructor
par PR
19 avr. 2020Good for beginners, interface could have been better
par KN
16 avr. 2020This was my first guided project on coursera and I decided to go with something small. This project just motivated me to take up more projects on the platform
par AS
4 juin 2020Good refresher course on linear regression! It would have been great had the Instructor covered few of the statical tests or multivariate regression model.
En achetant un Projet Guidé, vous obtenez tout ce dont vous avez besoin pour terminer ce Projet Guidé, y compris l'accès à un espace de travail de bureau cloud, via votre navigateur web, qui contient les fichiers et les logiciels dont vous avez besoin pour commencer, ainsi que les instructions vidéo étape par étape d'un expert en la matière.
Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.
Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.
À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.
Aucun remboursement n'est disponible pour les Projets Guidés. Consulter notre politique de remboursement complète.
Aucune aide financière n'est disponible pour les Projets Guidés.
L'audit n'est pas disponible pour les Projets Guidés.
En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce Projet Guidé pour afficher les connaissances requises. Pour chaque niveau de Projet Guidé, votre enseignant vous guidera étape par étape.
Oui, tout ce dont vous avez besoin pour terminer votre Projet Guidé sera présent sur un bureau cloud disponible dans votre navigateur.
Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.