Interpretable Machine Learning Applications: Part 4

Offert par
Dans ce Projet Guidé, vous :
1.5 hours
Intermédiaire
Aucun téléchargement requis
Vidéo en écran partagé
Anglais
Ordinateur de bureau uniquement

In this 1-hour long guided project, you will learn how to use the "What-If" Tool (WIT) in the context of training and testing machine learning prediction models. In particular, you will learn a) how to set up a machine learning application in Python by using interactive Python notebook(s) on Google's Colab(oratory) environment, a.k.a. "zero configuration" environment, b) import and prepare the data, c) train and test classifiers as prediction models, d) analyze the behavior of the trained prediction models by using WIT for specific data points (individual basis), e) moving on to the analysis of the behavior of the trained prediction models by using WIT global basis, i.e., all test data considered. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

  • Data Analysis

  • Data scientist

  • Machine learning project management

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions