Perform Feature Analysis with Yellowbrick

4.8
étoiles
50 évaluations
Offert par
Coursera Project Network
2,505 déjà inscrits
Dans ce projet guidé, vous :

Employ feature analysis techniques using visual diagnostic tools from Yellowbrick

Use visualization techniques to steer machine learnig workflows

Clock2 hours
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

Welcome to this project-based course on Performing Feature Analysis with Yellowbrick. In this course, we are going to use visualizations to steer machine learning workflows. The problem we will tackle is to predict whether rooms in apartments are occupied or unoccupied based on passive sensor data such as temperature, humidity, light and CO2 levels. With an emphasis on visual steering of our analysis, we will cover the following topics in our machine learning workflow: feature analysis using methods such as scatter plots, RadViz, parallel coordinates plots, feature ranking, and manifold visualization. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, Yellowbrick, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

Data ScienceMachine LearningPython ProgrammingData Visualization (DataViz)Scikit-Learn

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction and Importing Libraries

  2. Anscombe's Quartet

  3. Loading the Classification Data

  4. Creating a Scatter Plot

  5. RadViz

  6. Parallel Coordinates Plot

  7. Rank Features

  8. Manifold Visualization

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.