Dimensionality Reduction using an Autoencoder in Python

4.6
étoiles
82 évaluations
Offert par
Coursera Project Network
2,771 déjà inscrits
Dans ce projet guidé, vous :

How to generate and preprocess high-dimensional data

How an autoencoder works, and how to train one in scikit-learn

How to extract the encoder portion from a trained model, and reduce dimensionality of your input data

Clock60 minutes
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this 1-hour long project, you will learn how to generate your own high-dimensional dummy dataset. You will then learn how to preprocess it effectively before training a baseline PCA model. You will learn the theory behind the autoencoder, and how to train one in scikit-learn. You will also learn how to extract the encoder portion of it to reduce dimensionality of your input data. In the course of this project, you will also be exposed to some basic clustering strength metrics. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

Dimensionality ReductionArtificial Neural NetworkMachine Learningclustering

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. An introduction to the problem and a summary of needed imports

  2. Dataset creation and preprocessing

  3. Using PCA as a baseline for model performance

  4. Theory behind the autoencoder architecture and how to train a model in scikit-learn

  5. Reducing dimensionality using the encoder half of an autoencoder within scikit-learn

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Enseignant

Avis

Meilleurs avis pour DIMENSIONALITY REDUCTION USING AN AUTOENCODER IN PYTHON

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.