Detecting COVID-19 with Chest X-Ray using PyTorch
323 évaluations

10 881 déjà inscrits
Create custom Dataset and DataLoader in PyTorch
Train a ResNet-18 model in PyTorch to perform Image Classification
323 évaluations
10 881 déjà inscrits
Create custom Dataset and DataLoader in PyTorch
Train a ResNet-18 model in PyTorch to perform Image Classification
In this 2-hour long guided project, we will use a ResNet-18 model and train it on a COVID-19 Radiography dataset. This dataset has nearly 3000 Chest X-Ray scans which are categorized in three classes - Normal, Viral Pneumonia and COVID-19. Our objective in this project is to create an image classification model that can predict Chest X-Ray scans that belong to one of the three classes with a reasonably high accuracy. Please note that this dataset, and the model that we train in the project, can not be used to diagnose COVID-19 or Viral Pneumonia. We are only using this data for educational purpose. Before you attempt this project, you should be familiar with programming in Python. You should also have a theoretical understanding of Convolutional Neural Networks, and optimization techniques such as gradient descent. This is a hands on, practical project that focuses primarily on implementation, and not on the theory behind Convolutional Neural Networks. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Deep Learning
Machine Learning
Statistical Classification
Medical Imaging
pytorch
Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :
Introduction
Importing Libraries
Creating Custom Dataset
Image Transformations
Prepare DataLoader
Data Visualization
Creating the Model
Training the Model
Final Results
Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.
Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé
par TS
27 août 2020It's a nice project, but I think more explanation about the concepts (ex- imagenet dataset, restnet18 model, etc.) must be provided to make the understanding more clearer.
par KO
5 oct. 2020Excellent course.
My special thanks goes to Coursera and course supervisor
par II
22 août 2020Lecturer needs to let students know how to access dataset and code from in the beginning of the video lecture. It was hard to find code/ data download website
par AM
4 oct. 2020KUDOS TO THE INSTRUCTOR FOR A COMPREHENSIVE GUIDED MODULE.
En achetant un Projet Guidé, vous obtenez tout ce dont vous avez besoin pour terminer ce Projet Guidé, y compris l'accès à un espace de travail de bureau cloud, via votre navigateur web, qui contient les fichiers et les logiciels dont vous avez besoin pour commencer, ainsi que les instructions vidéo étape par étape d'un expert en la matière.
Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.
Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.
À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.
Aucun remboursement n'est disponible pour les Projets Guidés. Consulter notre politique de remboursement complète.
Aucune aide financière n'est disponible pour les Projets Guidés.
L'audit n'est pas disponible pour les Projets Guidés.
En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce Projet Guidé pour afficher les connaissances requises. Pour chaque niveau de Projet Guidé, votre enseignant vous guidera étape par étape.
Oui, tout ce dont vous avez besoin pour terminer votre Projet Guidé sera présent sur un bureau cloud disponible dans votre navigateur.
Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.