Analyze Text Data with Yellowbrick

78 évaluations
Offert par
Coursera Project Network
4,675 déjà inscrits
Dans ce projet guidé, vous :

Use visual diagnostic tools from Yellowbrick to steer your machine learning workflow

Vectorize text data using TF-IDF

Cluster documents using embedding techniques and appropriate metrics

Clock2 hours
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

Welcome to this project-based course on Analyzing Text Data with Yellowbrick. Tasks such as assessing document similarity, topic modelling and other text mining endeavors are predicated on the notion of "closeness" or "similarity" between documents. In this course, we define various distance metrics (e.g. Euclidean, Hamming, Cosine, Manhattan, etc) and understand their merits and shortcomings as they relate to document similarity. We will apply these metrics on documents within a specific corpus and visualize our results. By the end of this course, you will be able to confidently use visual diagnostic tools from Yellowbrick to steer your machine learning workflow, vectorize text data using TF-IDF, and cluster documents using embedding techniques and appropriate metrics. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, Yellowbrick, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

Data ScienceNatural Language ProcessingMachine LearningPython ProgrammingData Visualization (DataViz)

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction and Loading the Corpus

  2. Vectorizing the Documents

  3. Clustering Similar Documents with Squared Euclidean Distance And Euclidean Distance

  4. Manhattan (aka “Taxicab” or “City Block”) Distance

  5. Bray Curtis Dissimilarity and Canberra Distance

  6. Cosine Distance

  7. What Metrics Not to Use

  8. Omitting Class Labels - Using KMeans Clustering

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé



Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.