À propos de ce cours
Spécialisation
100 % en ligne

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Niveau avancé

Niveau avancé

Heures pour terminer

Approx. 19 heures pour terminer

Recommandé : 9 hours/week...
Langues disponibles

Anglais

Sous-titres : Anglais
Spécialisation
100 % en ligne

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Niveau avancé

Niveau avancé

Heures pour terminer

Approx. 19 heures pour terminer

Recommandé : 9 hours/week...
Langues disponibles

Anglais

Sous-titres : Anglais

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
Heures pour terminer
2 heures pour terminer

Welcome to Course 3: Visual Perception for Self-Driving Cars

This module introduces the main concepts from the broad field of computer vision needed to progress through perception methods for self-driving vehicles. The main components include camera models and their calibration, monocular and stereo vision, projective geometry, and convolution operations....
Reading
3 vidéos (Total 14 min), 3 lectures
Video3 vidéos
Meet the Instructor, Steven Waslander5 min
Meet the Instructor, Jonathan Kelly2 min
Reading3 lectures
CARLA Installation Guide45 min
How to Use Discussion Forums15 min
How to Use Supplementary Readings in This Course15 min
Heures pour terminer
3 heures pour terminer

Module 1: Basics of 3D Computer Vision

...
Reading
1 quiz
Semaine
2
Heures pour terminer
5 heures pour terminer

Module 2: Visual Features - Detection, Description and Matching

Visual features are used to track motion through an environment and to recognize places in a map. This module describes how features can be detected and tracked through a sequence of images and fused with other sources for localization as described in Course 2. Feature extraction is also fundamental to object detection and semantic segmentation in deep networks, and this module introduces some of the feature detection methods employed in that context as well....
Reading
1 quiz
Semaine
3
Heures pour terminer
1 heure pour terminer

Module 3: Feedforward Neural Networks

Deep learning is a core enabling technology for self-driving perception. This module briefly introduces the core concepts employed in modern convolutional neural networks, with an emphasis on methods that have been proven to be effective for tasks such as object detection and semantic segmentation. Basic network architectures, common components and helpful tools for constructing and training networks are described....
Reading
1 quiz
Quiz1 exercice pour s'entraîner
Feed-Forward Neural Networks30 min
Semaine
4
Heures pour terminer
1 heure pour terminer

Module 4: 2D Object Detection

The two most prevalent applications of deep neural networks to self-driving are object detection, including pedestrian, cyclists and vehicles, and semantic segmentation, which associates image pixels with useful labels such as sign, light, curb, road, vehicle etc. This module presents baseline techniques for object detection and the following module introduce semantic segmentation, both of which can be used to create a complete self-driving car perception pipeline....
Reading
1 quiz
Quiz1 exercice pour s'entraîner
Object Detection For Self-Driving Cars30 min

Enseignant

Avatar

Steven Waslander

Associate Professor
Aerospace Studies

À propos de Université de Toronto

Established in 1827, the University of Toronto is one of the world’s leading universities, renowned for its excellence in teaching, research, innovation and entrepreneurship, as well as its impact on economic prosperity and social well-being around the globe. ...

À propos de la Spécialisation Self-Driving Cars

Be at the forefront of the autonomous driving industry. With market researchers predicting a $42-billion market and more than 20 million self-driving cars on the road by 2025, the next big job boom is right around the corner. This Specialization gives you a comprehensive understanding of state-of-the-art engineering practices used in the self-driving car industry. You'll get to interact with real data sets from an autonomous vehicle (AV)―all through hands-on projects using the open source simulator CARLA. Throughout your courses, you’ll hear from industry experts who work at companies like Oxbotica and Zoox as they share insights about autonomous technology and how that is powering job growth within the field. You’ll learn from a highly realistic driving environment that features 3D pedestrian modelling and environmental conditions. When you complete the Specialization successfully, you’ll be able to build your own self-driving software stack and be ready to apply for jobs in the autonomous vehicle industry. It is recommended that you have some background in linear algebra, probability, statistics, calculus, physics, control theory, and Python programming. You will need these specifications in order to effectively run the CARLA simulator: Windows 7 64-bit (or later) or Ubuntu 16.04 (or later), Quad-core Intel or AMD processor (2.5 GHz or faster), NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher, 8 GB RAM, and OpenGL 3 or greater (for Linux computers)....
Self-Driving Cars

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous vous inscrivez au cours, vous bénéficiez d'un accès à tous les cours de la Spécialisation, et vous obtenez un Certificat lorsque vous avez réussi. Votre Certificat électronique est alors ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.