Chevron Left
Retour à State Estimation and Localization for Self-Driving Cars

Avis et commentaires pour d'étudiants pour State Estimation and Localization for Self-Driving Cars par Université de Toronto

4.7
étoiles
769 évaluations

À propos du cours

Welcome to State Estimation and Localization for Self-Driving Cars, the second course in University of Toronto’s Self-Driving Cars Specialization. We recommend you take the first course in the Specialization prior to taking this course. This course will introduce you to the different sensors and how we can use them for state estimation and localization in a self-driving car. By the end of this course, you will be able to: - Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares - Develop a model for typical vehicle localization sensors, including GPS and IMUs - Apply extended and unscented Kalman Filters to a vehicle state estimation problem - Understand LIDAR scan matching and the Iterative Closest Point algorithm - Apply these tools to fuse multiple sensor streams into a single state estimate for a self-driving car For the final project in this course, you will implement the Error-State Extended Kalman Filter (ES-EKF) to localize a vehicle using data from the CARLA simulator. This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics. To succeed in this course, you should have programming experience in Python 3.0, familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses), Statistics (Gaussian probability distributions), Calculus and Physics (forces, moments, inertia, Newton's Laws)....

Meilleurs avis

GN

29 oct. 2019

best online course so far that explains kalman filter and estimation methods with examples not just focusing on theoretical ,Thanks to the Dr's and course staff who worked hard to produce this course.

JC

9 févr. 2021

The course is informative and well constructed for learners. The final project is designed well so that we can build sensor fusion tools while applying what we have learned from this course.

Filtrer par :

1 - 25 sur 121 Avis pour State Estimation and Localization for Self-Driving Cars

par Jon H

4 juin 2019

par MachWave

1 juil. 2019

par Rade

7 juin 2019

par Wit S

14 oct. 2019

par Asad Q

9 févr. 2020

par Guruprasad M H

29 avr. 2019

par Remon G

12 août 2019

par River L

27 avr. 2019

par Joachim S

11 juin 2019

par Hemanth K K

23 mai 2021

par Carlos A

19 mars 2021

par Muhammad H S H J I

12 août 2019

par carlos s

5 déc. 2019

par anis

6 déc. 2019

par Georgios T

30 juil. 2019

par Yuwei W

17 nov. 2019

par D.B

5 avr. 2020

par Kasra D

12 oct. 2020

par Andrea B

16 juin 2020

par Dane R

6 juil. 2020

par Mukund C

8 juin 2020

par Qi W

11 janv. 2021

par Parikshit M

31 mars 2020

par Yashasvi S

29 juin 2020

par Ananth R

30 juil. 2019