Who is this class for: This course is part of “Applied Data Science with Python“ and is intended for learners who have basic python or programming background, and want to apply statistics, machine learning, information visualization, social network analysis, and text analysis techniques to gain new insight into data. Only minimal statistics background is expected, and the first course contains a refresh of these basic concepts. There are no geographic restrictions. Learners with a formal training in Computer Science but without formal training in data science will still find the skills they acquire in these courses valuable in their studies and careers.


Created by:  University of Michigan

LevelIntermediate
Language
English
How To PassPass all graded assignments to complete the course.
User Ratings
4.5 stars
Average User Rating 4.5See what learners said
Syllabus

FAQs
How It Works
Coursework
Coursework

Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.

Help from Your Peers
Help from Your Peers

Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.

Certificates
Certificates

Earn official recognition for your work, and share your success with friends, colleagues, and employers.

Creators
University of Michigan
The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.
Ratings and Reviews
Rated 4.5 out of 5 of 1,864 ratings

This is a very helpful course. The main advantage is that you will learn a lot of new ways to do operations over data. And this is an intermediary course that assumes that you already know about statistics, mathematics behind data. From my experience I want to tell that if you are taking this course don't just rely on the video this course provide (however videos gives you full context on the work that has to be done), you have to do your own research and reading from external sources too.

The explanation and content in teaching video is too brief for the assignment. It cannot not provide sufficient concept and knowledge for student to complete it, especially who not familiar with pandas.

Course was good , i wish number of exercises were more.

Excellent course, and very well taught. The projects are a bit difficult for beginners and will require independent learning as well as revising the lectures, but such is anything important in life.

The only thing I think the course can benefit from is a printed summary of lectures, since they can be quite dense with information! But I think the Jupyter Notebooks are a good inclusion as is.