This is the second of a two-course sequence introducing the fundamentals of Bayesian statistics. It builds on the course Bayesian Statistics: From Concept to Data Analysis, which introduces Bayesian methods through use of simple conjugate models. Real-world data often require more sophisticated models to reach realistic conclusions. This course aims to expand our “Bayesian toolbox” with more general models, and computational techniques to fit them. In particular, we will introduce Markov chain Monte Carlo (MCMC) methods, which allow sampling from posterior distributions that have no analytical solution. We will use the open-source, freely available software R (some experience is assumed, e.g., completing the previous course in R) and JAGS (no experience required). We will learn how to construct, fit, assess, and compare Bayesian statistical models to answer scientific questions involving continuous, binary, and count data. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. The lectures provide some of the basic mathematical development, explanations of the statistical modeling process, and a few basic modeling techniques commonly used by statisticians. Computer demonstrations provide concrete, practical walkthroughs. Completion of this course will give you access to a wide range of Bayesian analytical tools, customizable to your data.
Ce cours fait partie de la Spécialisation Statistiques bayésiennes
Offert par
À propos de ce cours
Votre entreprise pourrait-elle bénéficier de la formation des employés à des compétences recherchées ?
Essayez Coursera pour les affairesCompétences que vous acquerrez
- Gibbs Sampling
- Bayesian Statistics
- Bayesian Inference
- R Programming
Votre entreprise pourrait-elle bénéficier de la formation des employés à des compétences recherchées ?
Essayez Coursera pour les affairesOffert par
Programme de cours : ce que vous apprendrez dans ce cours
Statistical modeling and Monte Carlo estimation
Markov chain Monte Carlo (MCMC)
Common statistical models
Count data and hierarchical modeling
Avis
- 5 stars83,14 %
- 4 stars12,86 %
- 3 stars2,21 %
- 2 stars0,88 %
- 1 star0,88 %
Meilleurs avis pour BAYESIAN STATISTICS: TECHNIQUES AND MODELS
I learned a lot about MCMC. This course is taught using R, but I personally was also working on it in python at the same time. I would love to try a higher class. Thank you!
Excellent course for introducing yourself to Monte Carlo Methods applied to Bayesian statistics. Highly recommended!
One of the best designed courses. The material and videos are very precise and informative. The quiz questions and assignment are very enjoyable. Thank you !
I really enjoy taking this course. I have taken Bayesian course before so this is more like a systematic review for me and I still learned a lot!
À propos du Spécialisation Statistiques bayésiennes

Foire Aux Questions
Quand aurai-je accès aux vidéos de cours et aux devoirs ?
À quoi ai-je droit si je m'abonne à cette Spécialisation ?
Une aide financière est-elle possible ?
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.