À propos de ce Spécialisation

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau avancé

Approx. 3 mois pour terminer

5 heures/semaine recommandées

Anglais

Sous-titres : Anglais

Compétences que vous acquerrez

R ProgrammingMarketing AnalyticsPresentationMarketing Performance Measurement And Management

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau avancé

Approx. 3 mois pour terminer

5 heures/semaine recommandées

Anglais

Sous-titres : Anglais

Fonctionnement du Spécialisation

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

how it works

Cette Spécialisation compte 4 cours

Cours1

Foundations of strategic business analytics

4.4
425 notes
96 avis
Who is this course for? This course is designed for students, business analysts, and data scientists who want to apply statistical knowledge and techniques to business contexts. For example, it may be suited to experienced statisticians, analysts, engineers who want to move more into a business role. You will find this course exciting and rewarding if you already have a background in statistics, can use R or another programming language and are familiar with databases and data analysis techniques such as regression, classification, and clustering. However, it contains a number of recitals and R Studio tutorials which will consolidate your competences, enable you to play more freely with data and explore new features and statistical functions in R. With this course, you’ll have a first overview on Strategic Business Analytics topics. We’ll discuss a wide variety of applications of Business Analytics. From Marketing to Supply Chain or Credit Scoring and HR Analytics, etc. We’ll cover many different data analytics techniques, each time explaining how to be relevant for your business. We’ll pay special attention to how you can produce convincing, actionable, and efficient insights. We'll also present you with different data analytics tools to be applied to different types of issues. By doing so, we’ll help you develop four sets of skills needed to leverage value from data: Analytics, IT, Business and Communication. By the end of this MOOC, you should be able to approach a business issue using Analytics by (1) qualifying the issue at hand in quantitative terms, (2) conducting relevant data analyses, and (3) presenting your conclusions and recommendations in a business-oriented, actionable and efficient way. Prerequisites : 1/ Be able to use R or to program 2/ To know the fundamentals of databases, data analysis (regression, classification, clustering) We give credit to Pauline Glikman, Albane Gaubert, Elias Abou Khalil-Lanvin (Students at ESSEC BUSINESS SCHOOL) for their contribution to this course design....
Cours2

Foundations of marketing analytics

4.5
453 notes
127 avis
Who is this course for? This course is designed for students, business analysts, and data scientists who want to apply statistical knowledge and techniques to business contexts. For example, it may be suited to experienced statisticians, analysts, engineers who want to move more into a business role, in particular in marketing. You will find this course exciting and rewarding if you already have a background in statistics, can use R or another programming language and are familiar with databases and data analysis techniques such as regression, classification, and clustering. However, it contains a number of recitals and R Studio tutorials which will consolidate your competences, enable you to play more freely with data and explore new features and statistical functions in R. Business Analytics, Big Data and Data Science are very hot topics today, and for good reasons. Companies are sitting on a treasure trove of data, but usually lack the skills and people to analyze and exploit that data efficiently. Those companies who develop the skills and hire the right people to analyze and exploit that data will have a clear competitive advantage. It's especially true in one domain: marketing. About 90% of the data collected by companies today are related to customer actions and marketing activities.The domain of Marketing Analytics is absolutely huge, and may cover fancy topics such as text mining, social network analysis, sentiment analysis, real-time bidding, online campaign optimization, and so on. But at the heart of marketing lie a few basic questions that often remain unanswered: (1) who are my customers, (2) which customers should I target and spend most of my marketing budget on, and (3) what's the future value of my customers so I can concentrate on those who will be worth the most to the company in the future. That's exactly what this course will cover: segmentation is all about understanding your customers, scorings models are about targeting the right ones, and customer lifetime value is about anticipating their future value. These are the foundations of Marketing Analytics. And that's what you'll learn to do in this course....
Cours3

Case studies in business analytics with ACCENTURE

3.6
137 notes
56 avis
Who is this course for ? This course is RESTRICTED TO LEARNERS ENROLLED IN Strategic Business Analytics SPECIALIZATION as a preparation to the capstone project. During the first two MOOCs, we focused on specific techniques for specific applications. Instead, with this third MOOC, we provide you with different examples to open your mind to different applications from different industries and sectors. The objective is to give you an helicopter overview on what's happening in this field. You will see how the tools presented in the two previous courses of the Specialization are used in real life projects. We want to ignite your reflection process. Hence, you will best make use of the Accenture cases by watching first the MOOC and then investigate by yourself on the different concepts, industries, or challenges that are introduced during the videos. At the end of this course learners will be able to: - identify the possible applications of business analytics, - hence, reflect on the possible solutions and added-value applications that could be proposed for their capstone project. The cases will be presented by senior practitioners from Accenture with different backgrounds in term of industry, function, and country. Special attention will be paid to the "value case" of the issue raised to prepare you for the capstone project of the specialization. About Accenture Accenture is a leading global professional services company, providing a broad range of services and solutions in strategy, consulting, digital, technology and operations. Combining unmatched experience and specialized skills across more than 40 industries and all business functions—underpinned by the world’s largest delivery network—Accenture works at the intersection of business and technology to help clients improve their performance and create sustainable value for their stakeholders. With more than 358,000 people serving clients in more than 120 countries, Accenture drives innovation to improve the way the world works and lives. Visit us at www.accenture.com....
Cours4

Capstone: Create Value from Open Data

3.5
22 notes
7 avis
The Capstone project is an individual assignment. Participants decide the theme they want to explore and define the issue they want to solve. Their “playing field” should provide data from various sectors (such as farming and nutrition, culture, economy and employment, Education & Research, International & Europe, Housing, Sustainable, Development & Energies, Health & Social, Society, Territories & Transport). Participants are encouraged to mix the different fields and leverage the existing information with other (properly sourced) open data sets. Deliverable 1 is the preliminary preparation and problem qualification step. The objectives is to define the what, why & how. What issue do we want to solve? Why does it promise value for public authorities, companies, citizens? How do we want to explore the provided data? For Deliverable 2, the participant needs to present the intermediary outputs and adjustments to the analysis framework. The objectives is to confirm the how and the relevancy of the first results. Finally, with Deliverable 3, the participant needs to present the final outputs and the value case. The objective is to confirm the why. Why will it create value for public authorities, companies, and citizens. Assessment and grading: the participants will present their results to their peers on a regular basis. An evaluation framework will be provided for the participants to assess the quality of each other’s deliverables....

Enseignants

Avatar

Nicolas Glady

Associate professor, at ESSEC Business School
Marketing Department
Avatar

Arnaud De Bruyn

Professor at ESSEC Business School
Marketing department

Partenaires du secteur

Industry Partner Logo #0

À propos de Ecole de commerce ESSEC

For over a century, ESSEC has been developing a state-of-the-art educational program that gives the individual pride of place in its learning model, promoting the values of freedom, openness, innovation and responsibility. Preparing future managers to reconcile personal interests with collective responsibility, giving consideration to the common good in their decision-making, and weighing economic challenges against the social costs are some of the objectives ESSEC has set for itself. Its ultimate goal? To create a global world that has meaning for us all. ...

Foire Aux Questions

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • Cette Spécialisation n'est pas associée à des crédits universitaires, mais certaines universités peuvent décider d'accepter des Certificats de Spécialisation pour des crédits. Vérifiez-le auprès de votre établissement pour en savoir plus.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 5 months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over. The final Capstone Project will be offered 3-4 times per year.

  • This Specialization is designed for graduate students and professional interested in practical applications of business analytics techniques and big data,­ with a good IT and statistical background. You’ll need a strong background in R and analytics to complete the coursework, and some experience with machine learning and SQL will also be useful.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • You’ll be a fully accomplished expert in big data management, with a robust understanding of how data can be used to leverage strategic value. You’ll be comfortable qualifying research objectives, combining and manipulating data sets, and interpreting them. You’ll be prepared to present your interpretations and value case to potential stakeholders successfully.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.