About this Spécialisation
Cours en ligne à 100 %

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible

Planning flexible

Définissez et respectez des dates limites flexibles.
Niveau débutant

Niveau débutant

No prior data science experience required.

Heures pour terminer

Approx. 1 mois pour terminer

10 heures/semaine recommandées
Langues disponibles

Anglais

Sous-titres : Anglais, Chinois (traditionnel), Russe, Turc, Hindi, Japonais, Indonésien, Espagnol...

Ce que vous allez apprendre

  • Check

    Become conversant in the field and understand your role as a leader.

  • Check

    Recruit, assemble, evaluate, and develop a team with complementary skill sets and roles.

  • Check

    Navigate the structure of the data science pipeline by understanding the goals of each stage and keeping your team on target throughout.

  • Check

    Overcome the common challenges that frequently derail data science projects.

Compétences que vous acquerrez

Data ScienceData ManagementData AnalysisCommunicationLeadership
Cours en ligne à 100 %

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible

Planning flexible

Définissez et respectez des dates limites flexibles.
Niveau débutant

Niveau débutant

No prior data science experience required.

Heures pour terminer

Approx. 1 mois pour terminer

10 heures/semaine recommandées
Langues disponibles

Anglais

Sous-titres : Anglais, Chinois (traditionnel), Russe, Turc, Hindi, Japonais, Indonésien, Espagnol...

How the Spécialisation Works

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

how it works

Cette Spécialisation compte 5 cours

Cours1

A Crash Course in Data Science

4.5
4,219 notes
828 avis
By now you have definitely heard about data science and big data. In this one-week class, we will provide a crash course in what these terms mean and how they play a role in successful organizations. This class is for anyone who wants to learn what all the data science action is about, including those who will eventually need to manage data scientists. The goal is to get you up to speed as quickly as possible on data science without all the fluff. We've designed this course to be as convenient as possible without sacrificing any of the essentials. This is a focused course designed to rapidly get you up to speed on the field of data science. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know. 1. How to describe the role data science plays in various contexts 2. How statistics, machine learning, and software engineering play a role in data science 3. How to describe the structure of a data science project 4. Know the key terms and tools used by data scientists 5. How to identify a successful and an unsuccessful data science project 3. The role of a data science manager Course cover image by r2hox. Creative Commons BY-SA: https://flic.kr/p/gdMuhT...
Cours2

Building a Data Science Team

4.5
2,105 notes
287 avis
Data science is a team sport. As a data science executive it is your job to recruit, organize, and manage the team to success. In this one-week course, we will cover how you can find the right people to fill out your data science team, how to organize them to give them the best chance to feel empowered and successful, and how to manage your team as it grows. This is a focused course designed to rapidly get you up to speed on the process of building and managing a data science team. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know. 1. The different roles in the data science team including data scientist and data engineer 2. How the data science team relates to other teams in an organization 3. What are the expected qualifications of different data science team members 4. Relevant questions for interviewing data scientists 5. How to manage the onboarding process for the team 6. How to guide data science teams to success 7. How to encourage and empower data science teams Commitment: 1 week of study, 4-6 hours Course cover image by JaredZammit. Creative Commons BY-SA. https://flic.kr/p/5vuWZz...
Cours3

Managing Data Analysis

4.5
1,845 notes
251 avis
This one-week course describes the process of analyzing data and how to manage that process. We describe the iterative nature of data analysis and the role of stating a sharp question, exploratory data analysis, inference, formal statistical modeling, interpretation, and communication. In addition, we will describe how to direct analytic activities within a team and to drive the data analysis process towards coherent and useful results. This is a focused course designed to rapidly get you up to speed on the process of data analysis and how it can be managed. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know how to…. 1. Describe the basic data analysis iteration 2. Identify different types of questions and translate them to specific datasets 3. Describe different types of data pulls 4. Explore datasets to determine if data are appropriate for a given question 5. Direct model building efforts in common data analyses 6. Interpret the results from common data analyses 7. Integrate statistical findings to form coherent data analysis presentations Commitment: 1 week of study, 4-6 hours Course cover image by fdecomite. Creative Commons BY https://flic.kr/p/4HjmvD...
Cours4

Data Science in Real Life

4.4
1,316 notes
157 avis
Have you ever had the perfect data science experience? The data pull went perfectly. There were no merging errors or missing data. Hypotheses were clearly defined prior to analyses. Randomization was performed for the treatment of interest. The analytic plan was outlined prior to analysis and followed exactly. The conclusions were clear and actionable decisions were obvious. Has that every happened to you? Of course not. Data analysis in real life is messy. How does one manage a team facing real data analyses? In this one-week course, we contrast the ideal with what happens in real life. By contrasting the ideal, you will learn key concepts that will help you manage real life analyses. This is a focused course designed to rapidly get you up to speed on doing data science in real life. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know how to: 1, Describe the “perfect” data science experience 2. Identify strengths and weaknesses in experimental designs 3. Describe possible pitfalls when pulling / assembling data and learn solutions for managing data pulls. 4. Challenge statistical modeling assumptions and drive feedback to data analysts 5. Describe common pitfalls in communicating data analyses 6. Get a glimpse into a day in the life of a data analysis manager. The course will be taught at a conceptual level for active managers of data scientists and statisticians. Some key concepts being discussed include: 1. Experimental design, randomization, A/B testing 2. Causal inference, counterfactuals, 3. Strategies for managing data quality. 4. Bias and confounding 5. Contrasting machine learning versus classical statistical inference Course promo: https://www.youtube.com/watch?v=9BIYmw5wnBI Course cover image by Jonathan Gross. Creative Commons BY-ND https://flic.kr/p/q1vudb...

Enseignants

Avatar

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health

Partenaires du secteur

Industry Partner Logo #0
Industry Partner Logo #1

À propos de Johns Hopkins University

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Foire Aux Questions

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • Cette Spécialisation n'est pas associée à des crédits universitaires, mais certaines universités peuvent décider d'accepter des Certificats de Spécialisation pour des crédits. Vérifiez-le auprès de votre établissement pour en savoir plus.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 2 months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • A basic understanding of how data can be used in an industry, academic, or government environment.

  • We recommend that you take the courses in the following order: Crash Course in Data Science, Building a Data Science Team, Managing Data Analysis, Data Science in Real Life

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • Upon completion, you will be qualified to lead a team of data scientists. You will know how to ask the right questions, recruit the right people, and manage the full team as you work through the entire data science pipeline. The skills you learn in this specialization will prepare you to harness the potential of the data scientists in your organization and deliver world-class analyses to your clients and stakeholders.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.