Chevron Left
Retour à Exploratory Data Analysis with Seaborn

Avis et commentaires pour d'étudiants pour Exploratory Data Analysis with Seaborn par Coursera Project Network

4.6
étoiles
393 évaluations

À propos du cours

Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox. It is also a powerful tool to identify problems in analyses and for illustrating results.In this project-based course, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) Data Set. We will cover key concepts in exploratory data analysis (EDA) using visualizations to identify and interpret inherent relationships in the data set, produce various chart types including histograms, violin plots, box plots, joint plots, pair grids, and heatmaps, customize plot aesthetics and apply faceting methods to visualize higher dimensional data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Meilleurs avis

HP

7 sept. 2020

This project is great for people go want to advances her career exploring new viz techniques. The instructor is great, clear and easy to follow. I will definitely recommend to take this project.

PG

3 oct. 2020

As a beginner, this was a very good insight into EDA for me. You will however, have to read the documentation and more articles to go in-depth. However, this is a very good introductory course.

Filtrer par :

1 - 25 sur 66 Avis pour Exploratory Data Analysis with Seaborn

par Ravi K

21 avr. 2020

par Rob O

23 avr. 2020

par Anees A

3 mai 2020

par Suhaimi C

18 nov. 2020

par Pavithra K

1 août 2020

par Abhijit T

9 avr. 2020

par ASHISH M

3 mai 2020

par Ujjwal K

10 mai 2020

par Punam P

15 mai 2020

par Mukund P

13 mai 2020

par Rishabh R

17 mai 2020

par Dr M M S

8 nov. 2020

par Shri H

7 nov. 2020

par Nesmary G M D

14 mai 2022

par RADUL R D

12 juin 2020

par Hector P

7 sept. 2020

par Pawan K G

4 oct. 2020

par Sayak P

26 juin 2020

par Asmae A

10 avr. 2022

par HAY a

29 juin 2020

par Aditya T

5 nov. 2020

par Gourav K

27 juil. 2020

par Srikanth C

16 juin 2020

par omkar

10 juin 2020

par Mohamed A E S

31 juil. 2022