Chevron Left
Retour à Data Science in Real Life

Avis et commentaires pour d'étudiants pour Data Science in Real Life par Université Johns-Hopkins

2,318 évaluations

À propos du cours

Have you ever had the perfect data science experience? The data pull went perfectly. There were no merging errors or missing data. Hypotheses were clearly defined prior to analyses. Randomization was performed for the treatment of interest. The analytic plan was outlined prior to analysis and followed exactly. The conclusions were clear and actionable decisions were obvious. Has that every happened to you? Of course not. Data analysis in real life is messy. How does one manage a team facing real data analyses? In this one-week course, we contrast the ideal with what happens in real life. By contrasting the ideal, you will learn key concepts that will help you manage real life analyses. This is a focused course designed to rapidly get you up to speed on doing data science in real life. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know how to: 1, Describe the “perfect” data science experience 2. Identify strengths and weaknesses in experimental designs 3. Describe possible pitfalls when pulling / assembling data and learn solutions for managing data pulls. 4. Challenge statistical modeling assumptions and drive feedback to data analysts 5. Describe common pitfalls in communicating data analyses 6. Get a glimpse into a day in the life of a data analysis manager. The course will be taught at a conceptual level for active managers of data scientists and statisticians. Some key concepts being discussed include: 1. Experimental design, randomization, A/B testing 2. Causal inference, counterfactuals, 3. Strategies for managing data quality. 4. Bias and confounding 5. Contrasting machine learning versus classical statistical inference Course promo: Course cover image by Jonathan Gross. Creative Commons BY-ND
Points forts
Statistics review

(44 avis)

Meilleurs avis


19 août 2017

A very good and concise course that helps to understand the basics of the Data Science and its applications. The examples are very relevant and helps to understand the topic easily.


11 nov. 2017

Highly educational course on the realities of data analysis. Many good tips for your own analyses as well as for managing others responsible for coherent and accurate analyses.

Filtrer par :

226 - 250 sur 280 Avis pour Data Science in Real Life


7 juin 2017

par Luis A S E

15 mars 2021

par Parag

7 févr. 2021

par David T

14 nov. 2016

par Ruben S

17 août 2016

par Rajeev R

7 déc. 2015

par Gonzalo G A

16 déc. 2016

par Cauri J

4 juil. 2017

par Michail C

17 juil. 2019

par Daniel C d F

5 déc. 2016

par Peter L

14 août 2018

par Astolfo

5 juil. 2020

par Sean H

24 nov. 2015

par Chong K M

18 mars 2018

par Jean-Michel M

22 févr. 2019


28 juil. 2020

par Rong-Rong C

14 déc. 2017

par Alberto M

20 mars 2019

par Marco A P

2 janv. 2017

par Giovany G

15 juil. 2020

par Gilson F

2 août 2019

par emilio z

6 juin 2017

par Christopher L

3 mai 2018

par Ioannis L

9 avr. 2017

par Patricia S

2 janv. 2020