This course trains you in the skills needed to program specific orientation and achieve precise aiming goals for spacecraft moving through three dimensional space. First, we cover stability definitions of nonlinear dynamical systems, covering the difference between local and global stability. We then analyze and apply Lyapunov's Direct Method to prove these stability properties, and develop a nonlinear 3-axis attitude pointing control law using Lyapunov theory. Finally, we look at alternate feedback control laws and closed loop dynamics.
Ce cours fait partie de la Spécialisation Spacecraft Dynamics and Control
Offert par
À propos de ce cours
Offert par

Université du Colorado à Boulder
CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
Programme de cours : ce que vous apprendrez dans ce cours
Nonlinear Stability Definitions
Discusses stability definitions of nonlinear dynamical systems, and compares to the classical linear stability definitions. The difference between local and global stability is covered.
Overview of Lyapunov Stability Theory
Lyapunov's direct method is employed to prove these stability properties for a nonlinear system and prove stability and convergence. The possible function definiteness is introduced which forms the building block of Lyapunov's direct method. Convenient prototype Lyapunov candidate functions are presented for rate- and state-error measures.
Attitude Control of States and Rates
A nonlinear 3-axis attitude pointing control law is developed and its stability is analyized using Lyapunov theory. Convergence is discussed considering both modeled and unmodeled torques. The control gain selection is presented using the convenient linearized closed loop dynamics.
Alternate Attitude Control Formulations
Alternate feedback control laws are formulated where actuator saturation is considered. Further, a control law is presented that perfectly linearizes the closed loop dynamics in terms of quaternions and MRPs. Finally, the 3-axis Lyapunov attitude control is developed for a spacecraft with a cluster of N reaction wheel control devices.
Avis
- 5 stars81,66 %
- 4 stars10 %
- 3 stars5 %
- 2 stars3,33 %
Meilleurs avis pour CONTROL OF NONLINEAR SPACECRAFT ATTITUDE MOTION
Excellent course! Enjoyed it a lot. Learnt a lot as well. Thank you.
Excellent course but it could have been smoother if the instructor kept himself in loop with people doing the course
Thanks Prof Schaub, that was a wonder of a course! Learned so much and still want to proceed :)
Excellent teaching from Professor Schaub ! Course has been very well organised and touches on the important aspects of nonlinear control. Looking forward to more courses from you. Thank you !
À propos du Spécialisation Spacecraft Dynamics and Control
Spacecraft Dynamics and Control covers three core topic areas: the description of the motion and rates of motion of rigid bodies (Kinematics), developing the equations of motion that prediction the movement of rigid bodies taking into account mass, torque, and inertia (Kinetics), and finally non-linear controls to program specific orientations and achieve precise aiming goals in three-dimensional space (Control). The specialization invites learners to develop competency in these three areas through targeted content delivery, continuous concept reinforcement, and project applications.

Foire Aux Questions
Quand aurai-je accès aux vidéos de cours et aux devoirs ?
À quoi ai-je droit si je m'abonne à cette Spécialisation ?
Une aide financière est-elle possible ?
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.