Chevron Left
Retour à Machine Learning: Clustering & Retrieval

Avis et commentaires pour d'étudiants pour Machine Learning: Clustering & Retrieval par Université de Washington

2,209 évaluations
380 avis

À propos du cours

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....

Meilleurs avis

16 janv. 2017

Excellent course, well thought out lectures and problem sets. The programming assignments offer an appropriate amount of guidance that allows the students to work through the material on their own.

24 août 2016

excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.

Filtrer par :

201 - 225 sur 368 Avis pour Machine Learning: Clustering & Retrieval

par Danylo D

6 déc. 2016

Thank you, it was a good one

par Sandeep J

4 sept. 2016

Best course I've taken!! :)

par Alessandro B

15 déc. 2017

very useful and structured

par wonjai c

19 mai 2020

difficult but good enough

par Mostafa A

28 août 2016

Fantastic course as usual

par Gaurav K

23 sept. 2020

very good course to do.

par Jay M

26 mai 2020

Very good course for ML

par Velpula M K

6 déc. 2019

Good and best to learn.

par Brian N

20 mai 2018

This course is exciting

par suryatapa r

16 déc. 2016

It's an amazing Course.

par Aishwarya A

28 nov. 2020

best place to learn ML

par Juan F H

15 nov. 2018

The teacher is awesome

par gaozhipeng

26 déc. 2016


par Zhongkai M

12 févr. 2019

Great assignments : )

par roi s

29 oct. 2017

Great, very hands on!

par Weituo H

29 août 2016

strongly recommended!

par Sukhvir S

10 juil. 2020

wonderful experience

par Omar S

12 juil. 2017

I loved this course!

par Itrat R

22 janv. 2017

Excellent Course!!!


29 sept. 2020



16 juin 2020

most useful course

par Israel C

15 août 2017

Excellent Course!

par Antonio P L

3 oct. 2016

Excellent course.

par jihe

8 sept. 2016

Very good course!

par Igor D

21 août 2016

This was AWESOME!