À propos de ce cours
4.7
191 notes
46 avis
100 % en ligne

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Heures pour terminer

Approx. 44 heures pour terminer

Recommandé : 6 hours/week...
Langues disponibles

Anglais

Sous-titres : Anglais
100 % en ligne

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Heures pour terminer

Approx. 44 heures pour terminer

Recommandé : 6 hours/week...
Langues disponibles

Anglais

Sous-titres : Anglais

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
Heures pour terminer
1 heure pour terminer

ABOUT THIS COURSE

This section of the course will provide you with an overview of the course, an outline of the topics covered, as well as instructor comments about the Fundamentals of Engineering Exam and reference handbook....
Reading
3 vidéos (Total 20 min), 3 lectures
Video3 vidéos
Overview comments4 min
Reference Handbook13 min
Reading3 lectures
Course Syllabus10 min
Consent Form10 min
Get More from Georgia Tech10 min
Semaine
2
Heures pour terminer
3 heures pour terminer

Mathematics

This module reviews the basic principles of mathematics covered in the FE Exam. We first review the equations and characteristics of straight lines, then classify polynomial equations, define quadric surfaces and conics, and trigonometric identities and areas. In algebra we define complex numbers and logarithms, and show how to manipulate matrices and determinants. Basic properties of vectors with their manipulations and identities are presented. The discussion of series includes arithmetic and geometric progressions and Taylor and Maclaurin series. Calculus begins with definitions of derivatives and gives some standard forms and computation of critical points of curves, then presents grad, del and curl operators on scalar and vector functions. Differential equations are calcified and to methods to solve linear, homogenous equations are presented. Fourier series and transforms are defined along with standard forms, and finally Laplace transforms and their inverse are discussed. In all cases, basic ideas and equations are presented along with sample problems that illustrate the major ideas and provide practice on expected exam questions.Time: Approximately 4.5 hours | Difficulty Level: Medium...
Reading
15 vidéos (Total 123 min), 2 lectures, 1 quiz
Video15 vidéos
Analytic Geometry and Trigonometry: Polynomials and Conics9 min
Analytic and Geometry and Trigonometry: Trigonometry7 min
Algebra and Linear Algebra: Complex numbers and logarithms5 min
Algebra and Linear Algebra: Matrices and determinants7 min
Vectors: Basic Definitions and operations13 min
Vectors: Examples8 min
Series: Arithmetic and geometric progressions 10 min
Calculus: Derivatives and curvature10 min
Calculus: Integration5 min
Calculus: Gradient, divergence and curl7 min
DifferentialEq: Classification6 min
DifferentialEq: Solutions7 min
DifferentialEq: Fourier series7 min
DifferentialEq: Laplace7 min
Reading2 lectures
Learning Objectives10 min
Earn a Georgia Tech Badge/Certificate/CEUs10 min
Quiz1 exercice pour s'entraîner
Mathematics Supplemental Questions34 min
Semaine
3
Heures pour terminer
2 heures pour terminer

Probability and Statistics

This module reviews the basic principles of probability and statistics covered in the FE Exam. We first review some basic parameters and definitions in statistics, such as mean and dispersion properties followed by computation of permutations and combinations. We then give the definitions of probability and the laws governing it and apply Bayes theorem. We study probability distributions and cumulative functions, and learn how to compute an expected value. Particular probability distributions covered are the binomial distribution, applied to discrete binary events, and the normal, or Gaussian, distribution. We show the meaning of confidence levels and intervals and how to use and apply them. We define and apply the central limit theorem to sampling problems and brieflyt- and c2. We define hypothesis testing and show how to apply it to random data. Finally, we show how to apply linear regression estimates to data and estimate the degree of fit including correlation coefficients and variances.In all cases, basic ideas and equations are presented along with sample problems that illustrate the major ideas and provide practice on expected exam questions. Time: Approximately 3 hours | Difficulty Level: Medium...
Reading
13 vidéos (Total 91 min), 1 lecture, 1 quiz
Video13 vidéos
Permutation and Combinations8 min
Probability: Laws and Examples7 min
Probability: Bayes Theorem4 min
Probability Distributions: Density Functions8 min
Probability Distributions: Expected Values3 min
Probability Distributions:Binomial Distribution7 min
Probability Distributions:Normal Distribution6 min
Probability Distributions:Central Limit Theorem5 min
Probability Distributions:Other Distributions1 min
Confidence Levels6 min
Hypothesis Testing7 min
Linear Regression13 min
Reading1 lecture
Learning Objectives10 min
Quiz1 exercice pour s'entraîner
Probability and Statistics Supplemental Questions28 min
Semaine
4
Heures pour terminer
3 heures pour terminer

Statics

This module reviews the principles of statics: Forces and moments on rigid bodies that are in equilibrium. We first discuss Newton’s laws and basic concepts of what is a force, vectors, and the dimensions and units involved. Then we consider systems of forces and how to compute their resultants. We discuss the main characteristics of vectors and how to manipulate them. Then the meaning and computation of moments and couples. We discuss the concept of equilibrium of a rigid body and the categories of equilibrium in two dimensions. We show how to draw a meaningful free body diagram with different types of supports. Then how to analyze pulleys and compute static friction forces and solve problems involving friction. The concept and major characteristics of trusses are discussed, especially simple trusses, and we show how to analyze them by the method of joints and the method of sections. Finally, we analyze the geometrical properties of lines, areas, and volumes that are important in statics and mechanics of materials. These are moments of inertia, centroids, and polar moments of inertia of simple and composite objects. In all cases, basic ideas and equations are presented along with sample problems that illustrate the major ideas and provide practice on expected exam questions.Time: Approximately 3 hours | Difficulty Level: Medium...
Reading
9 vidéos (Total 150 min), 1 lecture, 1 quiz
Video9 vidéos
Basic Concepts Continued13 min
Moments and Couples16 min
Equilibrium22 min
Equilibrium Examples30 min
Trusses15 min
Trusses Method of Sections12 min
Centroids and Moments of Inertia18 min
Centroids and Moments of Inertia Continued10 min
Reading1 lecture
Statics10 min
Quiz1 exercice pour s'entraîner
Statics Supplemental Questions30 min

Enseignant

Avatar

Dr. Philip Roberts

Professor
School of Civil and Environmental Engineering

À propos de Georgia Institute of Technology

The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology. Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where more than 20,000 undergraduate and graduate students receive a focused, technologically based education....

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous achetez un Certificat, vous bénéficiez d'un accès à tout le contenu du cours, y compris les devoirs notés. Lorsque vous avez terminé et réussi le cours, votre Certificat électronique est ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.